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Summary

 UK and Ireland classification

EUNIS 2008 A5.243 Arenicola marina in infralittoral fine sand or muddy sand

JNCC 2015 SS.SSa.IMuSa.AreISa Arenicola marina in infralittoral fine sand or muddy sand

JNCC 2004 SS.SSa.IMuSa.AreISa Arenicola marina in infralittoral fine sand or muddy sand

1997 Biotope

 Description

In shallow fine sand or non-cohesive muddy sand in fully marine conditions (or occasionally in
variable salinity) a community characterized by the polychaete Arenicola marina may occur. This
biotope appears quite faunally sparse. Those other taxa present however, include scavenging
crustacea such as Pagurus bernhardus and Liocarcinus depurator, terebellid polychaetes such as
Lanice conchilega and the burrowing anemone Cerianthus lloydii. Occasional Sabella pavonina and
frequent Ensis spp. may also be observed in some areas. At certain times of the year a diatom film
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may be present on the sediment surface. The majority of records for this biotope are derived from
epifaunal surveys and consequently there is little information available for the associated infaunal
species. It is possible that this biotope, like EcorEns (to which it is broadly similar) is an epibiotic
overlay on other biotopes from the SSA complex. (Information from Connor et al., 2004).

 Depth range

0-5 m, 5-10 m, 10-20 m

 Additional information

Arenicola marina has a high fecundity and spawns synchronously within a given area, although the
spawning period varies between areas. Spawning usually coincides with spring tides and fair
weather (high pressure, low rainfall and wind speed) (see Arenicola marina review).

Wilde & Berghuis (1979b) reported 316,000 oocytes per female with an average wet weight of 4
grammes. Eggs and early larvae develop within the female burrow. Post-larvae are capable of
active migration by crawling, swimming in the water column and passive transport by currents
(Farke & Berghuis, 1979) e.g. Günther (1992) suggested that post-larvae of Arenicola marina were
transported distances in the range of 1 km.  Juvenile settlement is density dependant and the
juveniles avoid areas of high adult abundance and settle above the adults on the shore (Farke &
Berghuis, 1979; Reise et al., 2001). For example, on the sand flat of Sylt (North Sea), post-larvae
hibernate in mussel beds and shell gravel in deep tidal channels, then migrate above the normal
adult range (towards the top of the shore) and settle in conspicuous nursery beds in May to
October. The juveniles migrate down the shore before or during the next winter, leaving the upper
shore for the next generation. Reise et al. (2001) suggested that the largest and possibly oldest
individuals were found seaward and in subtidal sands.

Adults reach sexual maturity by their second year (Newell, 1948; Wilde & Berghuis, 1979) but may
mature by the end of their first year in favourable conditions depending on temperature, body size,
and hence food availability (Wilde & Berghuis, 1979).

Beukema & de Vlas, (1979) suggested a lifespan, in the Dutch Wadden Sea, of at least 5-6 years,
and cite a lifespan of at least 6 years in aquaria. They also suggested an average annual mortality or
22%, an annual recruitment of 20% and reported that the abundance of the population had been
stable for the previous 10 years. However, Newell (1948) reported 40% mortality of adults after
spawning in Whitstable.

McLusky et al. (1983) examined the effects of bait digging on blow lug populations in the Forth
estuary. Dug and in-filled areas and unfilled basins left after digging re-populated within 1 month,
whereas mounds of dug sediment took longer and showed a reduced population. Basins
accumulated fine sediment and organic matter and showed increased population levels for about
2-3 months after digging. Beukema (1995) noted that the lugworm stock recovered slowly from
mechanical dredging reaching its original level in at least three years.  Reise et al. (2001) noted that
a 50% reduction in the abundance of adult lugworm on sand flats in Sylt after the severe winter of
1995/96, was replaced by an enhanced recruitment of juveniles in spring, so that the effect of the
severe winter on Arenicola marina population was small and brief.  Beukema (1995) estimated that
four to five years of mechanical dredging in the Balgzand region of the Wadden Sea, increased the
mortality of the Arenicola population by ca 17% per year to a total of ca 40% per year and resulted

http://www.marlin.ac.uk/species/detail/1402
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in a long-term decline in the lugworm stock, until the dredge moved to a richer area. However,
Beukema (1995) noted that the lugworm stock recovered slowly after mechanical dredging,
reaching its original level after at least three years.

Therefore, the recovery of Arenicola marina populations is generally regarded as rapid, and occurs
by recolonization by adults or colonization by juveniles from adjacent populations or the subtidal.
However, Fowler (1999) pointed out that recovery may take longer on a small pocket, isolated,
beach with limited possibility of recolonization from surrounding areas. Therefore, if adjacent
populations are available recovery will be rapid. However, where the affected population is
isolated or severely reduced (e.g. by long-term mechanical dredging), then recovery may be
extended.

Resilience assessment.  Overall, the recovery of Arenicola marina is probably rapid.  However,
should a population be severely reduced it may take some time for recolonization to occur from
other populations. Therefore, where resistance is ‘Medium’ or ‘Low’ (some or significant mortality)
a resilience of High is recorded but where resistance is lower (‘None’; severe mortality) a resilience
of Medium (2-10 years) is recorded.

 Listed By

- none -

 Further information sources

Search on:

   JNCC

http://www.google.co.uk/search?q=iArenicola+marina/i+in+infralittoral+fine+sand+or+muddy+sand
http://scholar.google.co.uk/scholar?q=iArenicola+marina/i+in+infralittoral+fine+sand+or+muddy+sand
http://www.google.co.uk/search?q=SS.SSa.IMuSa.AreISa
https://mhc.jncc.gov.uk/search/?q=SS.SSa.IMuSa.AreISa
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Sensitivity review

 Sensitivity characteristics of the habitat and relevant characteristic species

Arenicola marina is a 'funnel feeding' surface deposit feeder, ingesting sediment from the base of a
funnel of sediment from within a U-shaped burrow (see Arenicola marina review; Wells, 1945; Zebe
& Schiedek, 1996). Bioturbation by burrowing species, especially Arenicola marina, mobilises
sediment and nutrients from the deeper sediment to the surface, making nutrients available to
surface dwelling organisms. In addition, continued irrigation of their burrows by Arenicola marina
transports oxygenated water into the sediment, resulting in oxygenated micro-environments in
the vicinity of their burrows.

In high enough abundances, bioturbation by Arenicola marina modifies the sediment surface into
mounds of casts and funnels. The resultant increase in bed roughness may result in increased
susceptibility to erosion since raised features provide sites where areas of turbulent flow can be
initiated. However, the effects of mucus binding in faecal pellet deposits increase the cohesiveness
of the sediment, reducing its susceptibility to erosion (see Hall, 1994). Wendelboe et al. (2013)
noted that sediment reworking by Arenicola marina (in mesocosms) increased the volume of
sediment exposed to hydrodynamic flow and, hence, the resuspension of fine particulate and
organic matter, depending on water flow, in the sediment to a depth of >20 cm. In addition, pits
may capture fine detritus, resulting in increase microbial production within the pit. Therefore,
bioturbation by both Arenicola marina can modify the sediment characteristics, its organic content,
and surface profile. 

Arenicola marina is the only important characterizing species within the biotope and a loss in the
abundance of its population would result in loss or reclassification of the biotope. The mobile
species (e.g. Pagurus bernhardus and Liocarcinus depurator) are probably found on similar sediments
in the surrounding area. Lanice conchilega stabilises sediment in higher abundances than it is found
in this biotope (see SCS.SLan) but is probably common in similar sediments.  The burrowing
anemone Cerianthus lloydii is found in a wide variety of sediments, from the lower intertidal to the
subtidal. Sabella pavonina and frequent Ensis spp. are only observed in some recorded of the
biotope. Therefore, the sensitivity of the biotope is dependent on the sensitivity of the population
of Arenicola marina.

 Resilience and recovery rates of habitat

Arenicola marina has a high fecundity and spawns synchronously within a given area, although the
spawning period varies between areas. Spawning usually coincides with spring tides and fair
weather (high pressure, low rainfall and wind speed) (see Arenicola marina review).

Wilde & Berghuis (1979b) reported 316,000 oocytes per female with an average wet weight of 4
grammes. Eggs and early larvae develop within the female burrow. Post-larvae are capable of
active migration by crawling, swimming in the water column and passive transport by currents
(Farke & Berghuis, 1979) e.g. Günther (1992) suggested that post-larvae of Arenicola marina were
transported distances in the range of 1 km.  Juvenile settlement is density dependant and the
juveniles avoid areas of high adult abundance and settle above the adults on the shore (Farke &
Berghuis, 1979; Reise et al., 2001). For example, on the sand flat of Sylt (North Sea), post-larvae
hibernate in mussel beds and shell gravel in deep tidal channels, then migrate above the normal
adult range (towards the top of the shore) and settle in conspicuous nursery beds in May to
October. The juveniles migrate down the shore before or during the next winter, leaving the upper

http://www.marlin.ac.uk/species/detail/1402
http://www.marlin.ac.uk/species/detail/1402
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shore for the next generation. Reise et al. (2001) suggested that the largest and possibly oldest
individuals were found seaward and in subtidal sands.

Adults reach sexual maturity by their second year (Newell, 1948; Wilde & Berghuis, 1979) but may
mature by the end of their first year in favourable conditions depending on temperature, body size,
and hence food availability (Wilde & Berghuis, 1979). Beukema & de Vlas (1979) suggested a
lifespan, in the Dutch Wadden Sea, of at least 5-6 years, and cite a lifespan of at least 6 years in
aquaria. They also suggested an average annual mortality or 22%, an annual recruitment of 20%
and reported that the abundance of the population had been stable for the previous 10 years.
However, Newell (1948) reported 40% mortality of adults after spawning in Whitstable.

McLusky et al. (1983) examined the effects of bait digging on blow lug populations in the Forth
estuary. Dug and in-filled areas and unfilled basins left after digging re-populated within 1 month,
whereas mounds of dug sediment took longer and showed a reduced population. Basins
accumulated fine sediment and organic matter and showed increased population levels for about
2-3 months after digging. Beukema (1995) noted that the lugworm stock recovered slowly from
mechanical dredging reaching its original level in at least three years.  Reise et al. (2001) noted that
a 50% reduction in the abundance of adult lugworm on sand flats in Sylt after the severe winter of
1995/96, was replaced by an enhanced recruitment of juveniles in spring so that the effect of the
severe winter on Arenicola marina population was small and brief.  Beukema (1995) estimated that
four to five years of mechanical dredging in the Balgzand region of the Wadden Sea, increased the
mortality of the Arenicola population by ca 17% per year to a total of ca 40% per year and resulted
in a long-term decline in the lugworm stock, until the dredge moved to a richer area. However,
Beukema (1995) noted that the lugworm stock recovered slowly after mechanical dredging,
reaching its original level after at least three years.

Therefore, the recovery of Arenicola marina populations is generally regarded as rapid and occurs
by recolonization by adults or colonization by juveniles from adjacent populations or the subtidal.
However, Fowler (1999) pointed out that recovery may take longer on a small pocket, isolated,
beach with limited possibility of recolonization from surrounding areas. Therefore, if adjacent
populations are available recovery will be rapid. However, where the affected population is
isolated or severely reduced (e.g. by long-term mechanical dredging), then recovery may be
extended.

Resilience assessment.  Overall, the recovery of Arenicola marina is probably rapid.  However,
should a population be severely reduced it may take some time for recolonization to occur from
other populations. Therefore, where resistance is ‘Medium’ or ‘Low’ (some or significant mortality)
a resilience of High is recorded but where resistance is lower (‘None’; severe mortality) a resilience
of Medium (2-10 years) is recorded.

 Hydrological Pressures
 Resistance Resilience Sensitivity

Temperature increase
(local)

Medium High Low
Q: High A: High C: Medium Q: High A: High C: High Q: High A: High C: Medium

Arenicola marina is recorded from shores of western Europe, Norway, Spitzbergen, north Siberia,
and Iceland. In the western Atlantic, it has been recorded from Greenland, along the northern
coast from the Bay of Fundy to Long Island. Its southern limit is about 40°N (see Arenicola marina
review), although OBIS (2016) includes a few records from the Atlantic coast of Africa and the

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
http://www.marlin.ac.uk/species/detail/1402
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Mediterranean.

Sommer et al. (1997) examined sub-lethal effects of temperature in Arenicola marina and suggested
a critical upper and lower temperature of 20°C and 5°C respectively in North Sea specimens.
Above or below these critical temperatures, specimens resort to anaerobic respiration. Sommer et
al. (1997) noted that specimens could not acclimate to a 4°C increase above the critical
temperature. De Wilde & Berghuis (1979) reported 20% mortality of juveniles reared at 5°C,
negligible mortality at 10 and 15°C but 50% mortality at 20°C and 90% at 25°C.

Schroeer et al. (2009) identified a shift in the thermal tolerance of Arenicola marina, with an
optimum moving towards higher temperatures with decreasing latitudes, suggesting the species
may adapt to long-term shifts such as 2°C but over time. Therefore, Arenicola marina in UK and
Irish populations will occupy an optimum temperature range in relation to UK and Irish latitudes.
An upper limit above 20°C may occur in more southerly populations. In studies in Whitley Bay,
Tyne and Wear, UK, Arenicola marina was most active in spring and summer months, with a mean
rate of cast production fastest in spring and particularly slow in autumn and winter, suggesting
feeding rate is greatest at higher temperatures (Retraubun et al., 1996). Retraubun et al. (1996)
also showed that cast production by specimens in lab experiments increased with temperature,
peaking at 20°C before declining. Rates of cast production at 30°C were still higher than at 10°C,
suggesting UK populations may have greater tolerance to higher temperatures than populations
studied in more northerly latitudes.

Temperature change may affect maturation, spawning time and synchronisation of spawning and
reproduction in the long-term (Bentley & Pacey, 1992; Watson et al., 2000). Spawning can be
inhibited in gravid adults maintained above 15°C (Watson et al., 2000). However, spawning success
would remain dependent upon spring and autumn temperatures remaining below 15°C.
Additionally, an impact from temperature change at the substratum surface may be mitigated as
Arenicola marina is protected from direct effects by their position in the sediment.

Sensitivity assessment. Arenicola marina is probably not resistant of a short-term acute change in
temperature of 5°C, although it is unlikely to be directly affected due to its infaunal habit and can
migrate down the shore to deeper waters to avoid the changes in temperature (Reise et al., 2001). 
Hence, a resistance of Medium is suggested to represent a loss of some of the Arenicola population
and especially juveniles.  Resilience is probably High and sensitivity is assessed as Low.

Temperature decrease
(local)

High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Arenicola marina is recorded from shores of western Europe, Norway, Spitzbergen, north Siberia,
and Iceland. In the western Atlantic, it has been recorded from Greenland, along the northern
coast from the Bay of Fundy to Long Island. Its southern limit is about 40°N (see Arenicola marina
review), although OBIS (2016) includes a few records from the Atlantic coast of Africa and the
Mediterranean.

Arenicola marina displays a greater tolerance to decreases in temperature than to increases,
although optimum temperatures are reported to be between 5°C and 20°C. Reise et al. (2001)
stated that Arenicola marina was known to be a winter hardy species and that its abundance and
biomass were stable even after severe winters.  Sommer et al. (1997) report populations in the
White Sea (sub-polar) acclimatised to -2°C in winter. Populations in the North Sea (boreal) were
less tolerant of temperatures below 5°C, although in laboratory experiments on individual

http://www.marlin.ac.uk/species/detail/1402
http://www.marlin.ac.uk/species/detail/1402
http://www.marlin.ac.uk/species/detail/1402
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lugworms from North Sea populations worms survived a temperature drop from 6 or 12°C to
-1.7°C for more than a week (Sommer & Portner, 1999).

Temperature change may affect maturation, spawning time and synchronisation of spawning and
reproduction in the long-term (Bentley & Pacey, 1992; Watson et al., 2000). Spawning success is
dependent upon spring and autumn temperatures, the seasons when spawning occurs in relation
to spring and neap tides, remaining below 13-15°C. De Wilde & Berghuis (1979) reported 20%
mortality of juveniles reared at 5 °C, negligible mortality at 10 °C and 15 °C but 50% at 20°C and
90% mortality at 25°C.

Evidence from the Sylt in the North Sea suggests that the effects of severe winters on Arenicola
marina populations are small and brief (Reise, et al., 2001) The severe winter of 1995/1996
disrupted the usual juvenile settlement cycle in the sand flats of the Sylt, North Sea (Reise et al.,
2001).  In the severe winter, the adult population of Arenicola marina migrated down the shore, to
deeper, waters to avoid low temperatures and 66 days of ice on the intertidal sand flats.  Although,
the adult population was halved, and no dead lugworms were observed on the surface or in the
sediment. The post-larvae hibernate in the deep water channels (subtidal) in shell gravel and
mussel beds. In summer the juveniles were not restricted to the upper shore but settled over a
wider area of the flats, in the space left by the adult population. Reise et al. (2001) concluded that
the enhanced recruitment demonstrated that the post-larvae did not suffer increased mortality
during the winter, probably as their subtidal hibernation sites did not experience ice cover. 
Similarly, Arenicola marina was listed as ‘apparently unaffected’ by the severe 1962/63 winter in
the UK (Crisp, 1964).

Sensitivity assessment. Arenicola marina populations are distributed to the north of the British
Isles, exhibit regional acclimation to temperature, are known to be winter hardy, and can migrate
to deeper water to avoid change in temperature and even ice. Therefore, the biotope is probably
resistant of a short to long-term decrease in temperature at the benchmark level and a resistance
of High is suggested. Hence, resilience is High and the biotope is assessed as Not sensitive at the
benchmark level.

Salinity increase (local) No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The biotope occurs in ‘full’ (35 ppt) salinity so that in an increase in salinity would result in
hypersaline conditions (>40 ppt). Hypersaline conditions are only likely because of hypersaline
effluents (brines). Arenicola marina loses weight when exposed to hyperosmotic shock (47 psu for
24 hrs) but are able to regulate and gain weight within 7-10 days (Zebe & Schiedek, 1996).

Sensitivity assessment. Arenicola marina was able to survive and adapt to short-term exposure to
47 psu (Zebe & Schiedek, 1996) but no evidence of the effect of long-term increases in salinity of
hypersaline effluents was found. Therefore, no assessment was made.   

Salinity decrease (local) High High Not sensitive
Q: High A: High C: Medium Q: High A: High C: High Q: High A: High C: Medium

This biotope is recorded from full or variable salinity (Connor et al., 2004).   Arenicola marina was
recorded in biotopes from ‘full’ to reduced salinity (Connor et al., 2004).
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Once the salinity of the overlying water drops below about 55% seawater (about 18psu) Arenicola
marina stops irrigation and compresses itself at the bottom of its burrow. It raises its tails to the
head of the burrow to 'test' the water at intervals, about once an hour. Once normal salinities
return they resume usual activity (Shumway & Davenport, 1977; Rankin & Davenport,1981; Zebe
& Schiedek, 1996). This behaviour, together with their burrow habitat, enabled the lugworm to
maintain its coelomic fluid and tissue constituents at a constant level, whereas individuals exposed
to fluctuating salinities outside their burrow did not (Shumway & Davenport, 1977).
Environmental fluctuations in salinity are only likely to affect the surface of the sediment, and not
deeper organisms since the interstitial or burrow water is little affected. However, lugworms may
be affected by low salinities at low tide after heavy rains. Arenicola marina was able to
osmoregulate intracellular and extracellular volume within 72 - 114 hrs by increased urine
production and increased amino acid concentration in response to hypo-osmotic shock (low
salinity) (see Zebe & Schiedek, 1996). Hayward (1994) suggested that Arenicola marina is unable to
tolerate salinities below 24 psu and is excluded from areas influenced by freshwater runoff or
input (e.g. the head end of estuaries) where it is replaced by Hediste diversicolor .  However, Barnes
(1994) reported that Arenicola marina occurred at salinities down to 18 psu in Britain, but survived
as low as 8 psu in the Baltic, whereas Shumway & Davenport (1977) reported that this species
cannot survive less than 10 psu in the Baltic. However, Arenicola marina was also found in the
western Baltic where salinities were as low as 10 ppt, and Baltic specimens survived at 6 ppt (Zebe
& Schiedek, 1996).  Therefore, regional populations can adapt to brackish conditions.

Sensitivity assessment.  The evidence suggests that a reduction in salinity from ‘full’ to ‘reduced’
for a year is unlikely to adversely affect the resident Arenicola population. The characteristic
mobile species and infauna typically occur in the intertidal and are also probably unaffected. 
Therefore, a resistance of High is suggested. Hence, resilience is High and the biotope is assessed
as Not sensitive at the benchmark level.

Water flow (tidal
current) changes (local)

High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: High C: High Q: Medium A: Medium C: Medium

The biotope is found in moderately strong (<0.5-1.5 m/s) to very weak (negligible) flow in shallow
fine sand or non-cohesive muddy sand (Connor et al., 2004).  

In 36-65 day mesocosm studies of the effects of Arenicola marina bioturbation, Wendelboe et al.
(2013) found that the surface of the sediment (sand and mud mixture) was dominated faecal
mounds and feeding pits at a flow rate of 0.11 m/s but was more eroded and the surface was more
even at 0.25 m/s. At the low flow (0.11 m/s) there was no change in the sediment. But at 0.25 m/s,
there was a substantial reduction in the silt and clay fractions of the sediment (a 36% reduction)
and in the organic content of the sediment (a 42% reduction). At 0.25 m/s the material ejected into
faecal casts was eroded (once the mucilaginous coating had eroded) and the water surface became
turbid, resulting in loss of both silt/clay fractions and organic matter. Wendelboe et al. (2013)
concluded that at ‘high’ flow (0.25 m/s) bioturbation by Arenicola (or other fauna) could lead to a
gradual change in the sediment in the bioturbated sediment layer (i.e. the upper few centimetres). 
However, their experiment was a closed system, whereas the biotope is likely to receive regular
input of organic matter.

Arenicola marina is generally absent from sediments with a mean particle size of <80µm and
abundance declines in sediments >200µm (fine sand) because they cannot ingest large particles. Its
absence from more fluid muddy sediments is probably because they do not produce large amounts

http://www.marlin.ac.uk/species/detail/1426
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of mucus with which to stabilise their burrows. Populations are greatest in sands of mean particle
size of 100 µm. Between 100 and 200 µm the biomass of Arenicola marina increases with increasing
organic content (Longbottom, 1970; Hayward, 1994). However, it is recorded from a variety of
sediments from fine muds to muddy sands and sandy muds, clean sand and mixed sediments
(Connor et al., 1997b).

Sensitivity assessment.  The biotope occurs in weak to very weak flow so that any further
reduction is not relevant. An increase in water flow could modify the sediment. A significant
increase may result in a change in the sediment from fine sands and muddy sands to gravelly
sediments as the sand and fine particulates are removed.  The experimental evidence suggests that
a change in flow of 0.11 m/s to 0.25 m/s was enough to alter the sediment and the appearance of
the biotope within 65 days.  Therefore, a change in flow of 0.1-0.2 m/s may result in a reduction in
the silt and organic content of the sediment, as well as the appearance of the biotope. The Arenicola
population would persist although the sediment may become sandier over time.   However, the
biotope is recorded from fine sands as well as muddy sands. Therefore, a resistance of High is
suggested. Resilience is, therefore, High and the biotope is assessed as Not sensitive at the
benchmark level.  

Emergence regime
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Change in emergence is only relevant to intertidal and sublittoral fringe biotopes.

Wave exposure changes
(local)

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

The biotope is recorded from moderately wave exposed to extremely wave sheltered conditions
and moderately strong to very weak flow. The low energy habitat is probably crucial for the
accumulation of the fine sands and muddy sands that typify the biotope, and those examples of the
biotope that occur in moderate wave action probably occur at a greater depth than those in wave
sheltered conditions. 

A further decrease in wave action is not relevant. However, an increase in wave action (e.g. due to
an increase in average storminess) would probably result in modification of the sediment and a
change to coarse sand or gravel conditions, depending on the magnitude of the increase. Arenicola
abundance declines in sediments >200µm (fine sand) so that the biotope would be reclassified and
lost. Nevertheless, a 3-5% increase in significant wave height (the benchmark) is unlikely to be
significant and the biotope is assessed as Not sensitive (resistance and resilience are High) at the
benchmark level.

 Chemical Pressures
 Resistance Resilience Sensitivity

Transition elements &
organo-metal
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Sediment may act as a sink for heavy metals contamination so that deposit feeding species may be

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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particularly vulnerable to heavy metal contamination through ingestion of particulates. At high
concentrations of Cu, Cd or Zn the blow lug left the sediment (Bat & Raffaelli, 1998). The following
toxicities have been reported in Arenicola marina:

no mortality after 10 days at 7 µg Cu/g sediment, 23 µg Zn/g and 9 µg Cd/g;
median lethal concentrations (LC50) of 20 µg Cu/g, 50 µg Zn/g, and 25 µg Cd/g (Bat &
Raffaelli, 1998).

However, Bryan (1984) suggested that polychaetes are fairly resistant to heavy metals, based on
the species studied. Short-term toxicity in polychaetes was highest to Hg, Cu and Ag, declined with
Al, Cr, Zn and Pb whereas Cd, Ni, Co and Se the least toxic.
Therefore, although the polychaete members of the biotope may be relatively resistant to heavy
metal contamination.

Nevertheless, this pressure is Not assessed but evidence is presented where available.

Hydrocarbon & PAH
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Sedimentary habitats are particularly vulnerable to oil pollution, which may settle onto the
sediment and persist for years (Cole et al., 1999). Subsequent digestion or degradation of the oil by
microbes may result in nutrient enrichment and eutrophication (see nutrients below). Although
protected from direct smothering by oil by its depth, shallow examples of the biotope could be
exposed to the water soluble fraction of oil, water soluble PAHs, and oil adsorbed onto
particulates.

Suchanek (1993) reviewed the effects of oil spills on marine invertebrates and concluded that, in
general, on soft sediment habitats, infaunal polychaetes, bivalves and amphipods were particularly
affected. Crude oil and oil: dispersant mixtures were shown to cause mortalities in Arenicola marina
(see review). Prouse & Gordon (1976) found that blow lug was driven out of the sediment by
waterborne fuel oil concentrations of >1 mg/l or sediment concentration of >100 µg/g.

Nevertheless, this pressure is Not assessed.

Synthetic compound
contamination

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The xenobiotic ivermectin was used to control parasitic infestations in livestock including sea lice
in fish farms, degrades slowly in marine sediments (half-life >100 days). Ivermectin was found to
produce a 10 day LC50 of 18µg ivermectin /kg of wet sediment in Arenicola marina. Sub-lethal
effects were apparent between 5 - 105 µg/kg. Cole et al. (1999) suggested that this indicated a high
intolerance. Arenicola marina has shown negative responses to chemical contaminants, including
damaged gills following exposure to detergents (Conti, 1987), and inhibited the action of esterases
following suspected exposure to point source pesticide pollution in sediments from the Ribble
estuary, UK (Hannam et al., 2008). Overall, therefore, members of this biotope may be sensitive
synthetic chemicals to varying degrees and adverse effects on larvae may reduce recruitment in
the long-term resulting in the loss of a proportion of the population.

Nevertheless, this pressure is Not assessed but evidence is presented where available.

http://www.marlin.ac.uk/species/detail/1402
http://www.marlin.ac.uk/species/detail/1402
http://www.marlin.ac.uk/species/detail/1402
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Radionuclide
contamination

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Reports on littoral sediment benthic communities at Sandside Bay, adjacent to Dounray nuclear
facility, Scotland, (where radioactive particles have been detected and removed) reported
Arenicola marina were abundant (SEPA, 2008). Kennedy et al. (1988) reported levels of 137Cs in
Arenicola spp. of 220-440 Bq/kg from the Solway Firth.  However, no information on the effects of
radionuclide contamination was found.

Introduction of other
substances

Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

This pressure is Not assessed.

De-oxygenation High High Not sensitive
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

Arenicola marina is subject to reduced oxygen concentrations regularly at low tide and is capable of
anaerobic respiration. The transition from aerobic to anaerobic metabolism takes several hours
and is complete within 6-8 hrs, although this is likely to be the longest period of exposure at low
tide. Fully aerobic metabolism is restored within 60 min once oxygen returns (Zeber & Schiedek,
1996). This species was able to survive anoxia for 90 hrs in the presence of 10 mmol/l sulphide in
laboratory tests (Zeber & Schiedek, 1996). Hydrogen sulphide (H2S) produced by
chemoautotrophs within the surrounding anoxic sediment and may, therefore, be present in
Arenicola marina burrows. Although the population density of Arenicola marina decreases with
increasing H2S, Arenicola marina is able to detoxify H2S in the presence of oxygen and maintain a
low internal concentration of H2S. At high concentrations of H2S in the lab (0.5, 0.76 and 1.26
mmol/l) the lugworm resorts to anaerobic metabolism (Zeber & Schiedek, 1996). At 16°C Arenicola
marina survived 72 hrs of anoxia but only 36 hrs at 20°C. Tolerance of anoxia was also seasonal,
and in winter anoxia tolerance was reduced at temperatures above 7°C. Juveniles have a lower
tolerance of anoxia but are capable of anaerobic metabolism (Zebe & Schiedek, 1996). However,
Arenicola marina has been found to be unaffected by short periods of anoxia and to survive for 9
days without oxygen (Borden, 1931 and Hecht, 1932 cited in Dales, 1958; Hayward, 1994). Diaz &
Rosenberg (1995) listed Arenicola marina as a species resistant of severe hypoxia.

Sensitivity assessment.  The muddy sediments found in this biotope are organic rich and the
benthic macrofauna is probably adapted to a degree of hypoxia. Burrowing species such as
Arenicola marina burrows into anoxic sediment and may be tolerant of hypoxia. Arenicola marina
would probably survive exposure to 2 mg O2/l for one week (the benchmark) although they may
incur a metabolic cost or reduced feeding during exposure. Therefore, resistance is assessed as
High, resilience as High (by default) and the biotope is probably Not sensitive at the benchmark
level.

Nutrient enrichment Not relevant (NR) Not relevant (NR) Not sensitive
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

The abundance and biomass of Arenicola marina increase with increased organic content in their
favoured sediment (Longbottom, 1970; Hayward, 1994). Therefore, moderate nutrient
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enrichment may be beneficial.

Indirect effects may include algal blooms and the growth of algal mats (e.g. of Ulva sp.) on the
surface of the intertidal flats. Algal mats smother the sediment, and create anoxic conditions in the
sediment underneath, changes in the microphytobenthos, and with increasing enrichment, a
reduction in species richness, the sediment becoming dominated by pollution tolerant polychaetes,
e.g. Manayunkia aestuarina. In extreme cases, the sediment may become anoxic and defaunated
(Elliot et al., 1998). Algal blooms have been implicated in mass mortalities of lugworms, e.g. in South
Wales where up to 99% mortality was reported (Boalch, 1979; Olive & Cadman, 1990; Holt et al.
1995). Feeding lugworms were present and exploitable by bait diggers within 1 month, suggesting
rapid recovery, probably by migration from surrounding areas or juvenile nurseries.

Nevertheless, this biotope is considered to be Not sensitive at the pressure benchmark that
assumes compliance with good status as defined by the WFD.

Organic enrichment High High Not sensitive
Q: High A: Medium C: Medium Q: High A: High C: High Q: High A: Medium C: Medium

The abundance and biomass of Arenicola marina increase with increased organic content in their
favoured sediment (Longbottom, 1970; Hayward, 1994). Moderate enrichment increases food
supplies, enhancing productivity and abundance. Gray et al. (2002) concluded that organic deposits
between 50 to 300 gC m–2 yr–1, are efficiently processed by benthic species. Substantial increases >
500 g C m-2 yr-1 would likely to have negative effects, limiting the distribution of organisms and
degrade the habitat, leading to eutrophication, algal blooms, and changes in community structure
to a community dominated by opportunist species (e.g. capitellids) with increased abundance but
reduced species richness,  and eventually to abiotic anoxic sediments (Pearson & Rosenberg, 1978;
Gray, 1981; Snelgrove et al.,1995; Cromey et al., 1998).

Borja et al. (2000) and Gittenberger & loon (2011) placed Arenicola marina into the AMBI pollution
group III, defined as ‘Species tolerant to excess organic matter enrichment. These species may
occur under normal conditions, but their populations are stimulated by organic enrichment (slight
unbalance situations)’.

Sensitivity assessment.  The biotope is probably rich in organic matter as it occurs in sheltered,
isolated areas. Therefore, a resistance of High is suggested at the benchmark level. Hence,
resilience is High and the biotope is assessed as Not sensitive at the benchmark level.

 Physical Pressures
 Resistance Resilience Sensitivity

Physical loss (to land or
freshwater habitat)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this
pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). 
Sensitivity within the direct spatial footprint of this pressure is, therefore, ‘High’.  Although no
specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible
nature of this pressure.

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Physical change (to
another seabed type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope is only found in sediment and the burrowing organisms (i.e. Arenicola marina) would
not be able to survive if the substratum type was changed to either a soft rock or hard artificial
type, and the biotope would be lost. 

Sensitivity assessment.  The resistance to this change is ‘None’, and the resilience is assessed as
‘Very low’ as the change at the pressure benchmark is permanent. The biotope is assessed to have
a ‘High’ sensitivity to this pressure at the benchmark.

Physical change (to
another sediment type)

None Very Low High
Q: High A: High C: High Q: High A: High C: High Q: High A: High C: High

This biotope (IMuSa.ArelSa) is only found in low energy conditions and is defined by the presence
of muddy sands or fine sand.  A change in sediment type by one Folk class (using the Long 2006
simplification) would change the sediment to either coarser sediments (e.g coarse sand and gravel)
or fine sediment i.e. mud.  Although the Arenicola population would persist in muds but the biotope
would be lost and reclassified, probably as IFiMu.Are.  Alternatively, a  change t o coarse sediment
t would probably result in loss of the Arenicola population, and the biotope would be reclassified
and lost. Therefore, a resistance of None is recorded, resilience is Very low (the pressure is a
permanent change) and sensitivity is assessed as High.

Habitat structure
changes - removal of
substratum (extraction)

None Medium Medium

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Extraction of sediment to a depth of 30 cm would remove the community within the affected area.
Therefore, a resistance of None is suggested. Resilience is probably Medium, due to the isolated
nature of the sea lochs and lagoons in which this biotope is found, and sensitivity is assessed as
Medium.

Abrasion/disturbance of
the surface of the
substratum or seabed

High High Not sensitive

Q: Medium A: Medium C: Low Q: High A: High C: High Q: Medium A: Medium C: Low

Arenicola marina lives in sediment to a depth of 20-40 cm and, therefore, is protected from most
sources of abrasion and physical disturbance caused by surface action. However, it is likely to be
damaged by any activity (e.g. anchors, dredging) that penetrates the sediment (see below).

There are few studies on the effects of trampling on sedimentary habitats. Most studies suggest
that the effects of trampling across sedimentary habitats depend on the relative proportion of mud
to sand (sediment porosity), the dominant infauna (nematodes and polychaetes vs. bivalves) and
the presence of burrows (Tyler-Walters & Arnold, 2008). Recovery from impact is relatively fast as
shown by Chandrasekara & Frid (1996), where no difference was reported between samples in
winter following summer trampling. Wynberg & Branch (1997) suggest that trampling effects are
most severe in sediments dominated by animals with stable burrows, as these collapse and the
sediment becomes compacted. Rossi et al. (2007) examined trampling across intertidal mudflats
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but were not able to show a significant difference in Arenicola abundance between trampled and
control sites due to the natural variation in abundance between study sites.

Rees (1978 cited in Hiscock et al., 2002) assessed pipe laying activity in Lafan Sands, Conwy Bay,
Wales. The pipe was laid in a trench dug by excavators. The spoil from the trenching was then used
to bury the pipe. The trenching severely disturbed a narrow zone, but a zone some 50 m wide on
each side of the pipeline was also disturbed by the passage of vehicles. The tracked vehicles
damaged and exposed shallow-burrowing species such as the bivalves Cerastoderma edule and
Limecola balthica, which were then preyed upon by birds. Deeper-dwelling species were apparently
less affected; casts of the lugworm Arenicola marina and feeding marks made by the bivalve
Scrobicularia plana were both observed in the vehicle tracks. During the construction period, the
disturbed zone was continually re-populated by mobile organisms, such as the gastropod Hydrobia
ulvae. Post-disturbance recolonization was rapid. Several species, including the polychaetes
Arenicola marina, Eteone longa and Scoloplos armiger recruited preferentially to the disturbed area.
However, the numbers of the relatively long-lived Scrobicularia plana were markedly depressed,
without signs of obvious recruitment several years after the pipeline operations had been
completed.

Sensitivity assessment.  Although this biotope is found in the subtidal, it is theoretically possible
for vehicles or pedestrians to traverse shallow examples of the biotope (0-5 m). Nevertheless, the
evidence suggests that Arenicola is little affected by abrasion in the form of trampling or vehicle
compaction.  Therefore, a resistance of High is suggested so that resilience is also High (by default)
and the biotope is probably Not sensitive to abrasion due to trampling or vehicular access.

Penetration or
disturbance of the
substratum subsurface

Low High Low

Q: High A: High C: Medium Q: High A: High C: High Q: High A: High C: Medium

Mendonça et al. (2008) studied populations of the polychaete Arenicola marina at Culbin Sands
lagoon, Moray Firth, in NE Scotland. An unprecedented and unexpected cockle harvesting event
took place, 1.5 years after the start of the sampling programme, which dramatically disturbed the
sediment as it was conducted using tractors with mechanical rakes in some areas, and by boats
using a suction dredge in other areas. Therefore, there was an opportunity to compare annual
biomass fluctuations “before” and “after” the disturbance. Arenicola marina was observed to return
to normal activities just a few hours after the disturbance of the sediment during the harvesting
event.

Rees (1978 cited in Hiscock et al., 2002) assessed pipe laying activity in Lafan Sands, Conwy Bay,
Wales. The pipe was laid in a trench dug by excavators. The spoil from the trenching was then used
to bury the pipe. The trenching severely disturbed a narrow zone, but a zone some 50 m wide on
each side of the pipeline was also disturbed by the passage of vehicles. The tracked vehicles
damaged and exposed shallow-burrowing species such as the bivalves Cerastoderma edule and
Limecola balthica, which were then preyed upon by birds. Deeper-dwelling species were apparently
less affected; casts of the lugworm Arenicola marina and feeding-marks made by the bivalve
Scrobicularia plana were both observed in the vehicle tracks. During the construction period, the
disturbed zone was continually re-populated by mobile organisms, such as the gastropod Hydrobia
ulvae. Post-disturbance recolonization was rapid. Several species, including the polychaetes
Arenicola marina, Eteone longa and Scoloplos armiger recruited preferentially to the disturbed area.
However, the numbers of the relatively long-lived Scrobicularia plana were markedly depressed,
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without signs of obvious recruitment several years after the pipeline operations had been
completed.

McLusky et al. (1983) examined the effects of bait digging on blow lug populations in the Forth
estuary. Dug and infilled areas and unfilled basins left after digging re-populated within 1 month,
whereas mounds of dug sediment took showed a reduced population. The basins accumulated fine
sediment and organic matter and showed increased population levels for about 2-3 months after
digging.

Fowler (1999) reviewed the effects of bait digging on intertidal fauna, including Arenicola marina.
Diggers were reported to remove 50 or 70% of the blow lug population. Heavy commercial
exploitation in Budle Bay in winter 1984 removed 4 million worms in 6 weeks, reducing the
population from 40 to <1 per m². Recovery occurred within a few months by recolonization from
surrounding sediment (Fowler, 1999). However, Cryer et al. (1987) reported no recovery for 6
months over summer after mortalities due to bait digging. Mechanical lugworm dredgers were
used in the Dutch Wadden Sea where they removed 17-20 million lugworms/year. However, when
combined with hand digging the harvest represented only 0.75% of the estimated population in
the area. A near doubling of the lugworm mortality in dredged areas was reported, resulting in a
gradual substantial decline in the local population over a 4 year period. The effects of mechanical
lugworm dredging is more severe and can result in the complete removal of Arenicola marina
(Beukema, 1995; Fowler, 1999). Beukema (1995) noted that the lugworm stock recovered slowly
and reached its original level in at least three years.

Sensitivity assessment.  Penetrative gear would probably damage or remove a proportion of the
population of Arenicola but given its potential density, the effects may be minor (e.g. Mendonça et
al., 2008). Similarly, recreational bait digging may have a limited effect, especially in the subtidal.
However, if commercial bait digging occurred in the shallow sublittoral, then a significant
proportion of the population may be removed. Hence, a resistance of Low is suggested. Resilience
is probably High and sensitivity is assessed as Low.

Changes in suspended
solids (water clarity)

High High Not sensitive
Q: High A: Medium C: Medium Q: High A: High C: High Q: High A: Medium C: Medium

This biotope occurs in fine sands and muddy sands that accumulate in low energy environments. 
Deposit feeders are unlikely to be perturbed by increased concentrations of suspended sediment
since they live in sediment and are probably adapted to re-suspension of sediment by wave action,
during storms or runoff.

In 36-65 day mesocosm studies of the effects of Arenicola marina bioturbation, Wendelboe et al.
(2013) found that the surface of the sediment (a sand and mud mixture) was dominated by faecal
mounds and feeding pits at a flow rate of 0.11 m/s, but was more eroded and the surface was more
even at 0.25 m/s. At the low flow (0.11 m/s) there was no change in the sediment. However, at 0.25
m/s, there was a substantial reduction in the silt and clay fractions of the sediment (a 36%
reduction) and in the organic content of the sediment (a 42% reduction). At 0.25 m/s the material
ejected into faecal casts was eroded (once the mucilaginous coating had eroded) and the water
surface became turbid, resulting in loss of both silt/clay fractions and organic matter. 

Sensitivity assessment.  The evidence from Wendelboe et al. (2013) suggests that an increase in
water movement due to storms, or runoff is likely to disturb the sediment surface regularly,
especially in winter months, so that the biotope is probably not affected by changes in suspended
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sediment.  In addition, Arenicola marina occurs at high abundances in mudflats and sandflats in
estuaries where suspended sediment levels may reach grammes per litre. Therefore, a resistance
of High is suggested so that resilience is High (by default) and the biotope is assessed as Not
sensitive at the benchmark level.

Smothering and siltation
rate changes (light)

High High Not sensitive
Q: Medium A: Medium C: Medium Q: High A: High C: High Q: Medium A: Medium C: Medium

Arenicola marina is a sub-surface deposit feeder that derives the sediment it ingests from the
surface. It rapidly reworks and mixes sediment. It grows to 12-20 cm in length and lives in burrows
to a depth of 20-40 cm. It is unlikely to be perturbed by smothering by 5 cm of sediment. Juveniles
may be more susceptible but both adults and juveniles are capable of leaving the sediment and
swimming (on the tide) up or down the shore (see Reise et al., 2001). In addition, Gittenberger &
Loon (2011) placed Arenicola marina into their AMBI Sedimentation Group III, defined as ‘species
insensitive to higher amounts of sedimentation, but don’t easily recover from strong fluctuations
in sedimentation’.

Sensitivity assessment. This biotope occurs in a depositional environment, where sedimentation is
likely, to be high due to the low energy of the habitat. Therefore, resistance to a deposit of 5 cm of
fine sediment is assessed as High. Hence, resilience is High (by default) and the biotope is probably
Not sensitive at the benchmark level.

Smothering and siltation
rate changes (heavy)

Medium High Low
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Arenicola marina is a sub-surface deposit feeder that derives the sediment it ingests from the
surface. It rapidly reworks and mixes sediment. It grows to 12-20 cm in length and lives in burrows
to a depth of 20-40 cm. Adults may be able to resist smothering by 30 cm of sediment but juveniles
may be more susceptible.  Both adults and juveniles are capable of leaving the sediment and
swimming (on the tide) up or down the shore (see Reise et al., 2001). In addition, Gittenberger &
Loon (2011) placed Arenicola marina into their AMBI sedimentation Group III, defined as ‘species
insensitive to higher amounts of sedimentation, but don’t easily recover from strong fluctuations
in sedimentation’.

Sensitivity assessment. This biotope occurs in a depositional environment, where sedimentation is
likely, to be high due to the low energy of the habitat. However, the deposit of 30 cm in a single
event is probably greater than the normal range of sedimentation and, in these sheltered habitats,
likely to remain.  Therefore, a proportion of the adults and a greater proportion of the juveniles
may not be able to realign themselves with the surface of the sediment and resistance is assessed
as Medium but at ‘Low’ confidence due to the lack of direct evidence. Hence, resilience is probably
High and sensitivity is assessed as Low at the benchmark level.

Litter Not Assessed (NA) Not assessed (NA) Not assessed (NA)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Plastic debris breaks up to form microplastics. Microplastics have been shown to occur in marine
sediments and to be ingested by deposit feeders such as Arenicola marina and holothurians, as well
as by suspension feeders, e.g. Mytilus edulis (Wright et al., 2013b; Browne et al., 2015).

http://www.marlin.ac.uk/species/detail/1402
http://www.marlin.ac.uk/species/detail/1402
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Wright et al. (2013) showed that the presence of microplastics (5% UPVC) in a lab study
significantly reduced feeding activity when compared to concentrations of 1% UPVC and controls.
As a result, Arenicola marina showed significantly decreased energy reserves (by 50%), took longer
to digest food, and as a result decreased bioturbation levels, which would be likely to impact
colonization of sediment by other species, reducing diversity in the biotopes the species occurs
within. Wright et al. (2013) suggested that in the intertidal regions of the Wadden Sea, where
Arenicola marina is an important ecosystem engineer, Arenicola marina could ingest 33m3 of
microplastics a year.

In a similar experiment, Browne et al. (2013) exposed Arenicola marina to sediments with 5% PVC
particles or sand presorbed with pollutants nonylophenol and phenanthrene for 10 days. PVC is
dense and sinks to the sediment. The experiment used Both microplastics and sand transferred the
pollutants into the tissues of the lugworm by absorption through the gut. The worms accumulated
over 250% more of these pollutants from sand than from the PVC particulates. The lugworms
were also exposed to PVC particulates presorbed with plastic additive, the flame retardant
PBDE-47 and antimicrobial Triclosan. The worms accumulated up to 3,500% of the concentration
of theses contaminants when compared when to the experimental sediment. Clean sand and PVC
with contaminants reduced feeding but PVC with Triclosan reduced feeding by over 65%. In the
PVC with Triclosan treatments, 55% of the lugworms died.  Browne et al, 2013 concluded that the
contaminants tested reduced feeding, immunity, response to oxidative stress, and survival (in the
case of Triclosan).

Sensitivity assessment. Impacts from the pressure ‘litter’ would depend on upon the exact form of
litter or man-made object being introduced.  Browne et al. (2015) suggested that if effects in the
laboratory occurred in nature, they could lead to significant changes in sedimentary communities
as Arenicola marina is an important bioturbators and ecosystem engineer in sedimentary habitats.
Nevertheless, while significant impacts have been shown in laboratory studies, impacts at biotope
scales are still unknown and this pressure is  ​Not assessed.

Electromagnetic changes No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

No evidence was found

Underwater noise
changes

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Species within the biotope can probably detect vibrations caused by noise and in response may
retreat into the sediment for protection. However, at the benchmark level, the community is
unlikely to be respond to noise and therefore is Not sensitive.

Introduction of light or
shading

High High Not sensitive
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

All characterizing species live in the sediment and do not rely on light levels directly to feed or so
limited direct impact is expected. As this biotope is not characterized by the presence of primary
producers it is not considered that shading would alter the character of the habitat directly.
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Beneath shading structures, there may be changes in microphytobenthos abundance. This biotope
may support microphytobenthos on the sediment surface and within the sediment. Mucilaginous
secretions produced by these algae may stabilise fine substrata (Tait & Dipper, 1998). Shading will
prevent photosynthesis leading to death or migration of sediment microalgae altering sediment
cohesion and food supply to deposit feeders like Arenicola, although they fed on a range of organic
matter within the sediment.

Sensitivity assessment. Therefore, biotope resistance is assessed as ‘High’ and resilience is
assessed as ‘High’ (by default) and the biotope is considered to be ‘Not sensitive’.

Barrier to species
movement

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant - this pressure is considered applicable to mobile species, e.g. fish and marine
mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal
of seed.  But seed dispersal is not considered under the pressure definition and benchmark.

Death or injury by
collision

Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant to seabed habitats. 

Visual disturbance Not relevant (NR) Not relevant (NR) Not relevant (NR)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Not relevant.

 Biological Pressures
 Resistance Resilience Sensitivity

Genetic modification &
translocation of
indigenous species

Not relevant (NR) Not relevant (NR) Not relevant (NR)

Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Important characterizing species within this biotope are not genetically modified or translocated.
Therefore, This pressure is considered ‘Not relevant’ to this biotope group.

Introduction or spread of
invasive non-indigenous
species

Low Very Low High

Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Coastal and estuarine areas are among the most biologically invaded systems in the world,
especially by molluscs such as the slipper limpet Crepidula fornicata and the Pacific oyster
Magallana gigas (OSPAR, 2009b). The two species have not only attained considerable biomasses
from Scandinavian to Mediterranean countries but have also generated ecological consequences
such as alterations of benthic habitats and communities, or food chain changes. In the Wadden Sea,
the main issue of concern is the pacific oyster (Magallana gigas), which has also spread in the

https://www.marlin.ac.uk/glossarydefinition/habitatsncbresistanceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbresilienceranking
https://www.marlin.ac.uk/glossarydefinition/habitatsncbsensitivityranking
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Thames estuary and along French intertidal flats. Padilla (2010) predicted that Magallana gigas
could either displace or overgrown mussels on rocky and sedimentary habitats of low or high
energy.  However, Padilla (2010) also noted that there were no examples of Magallana gigas
invading sedimentary habitats where there are no native ecosystem engineers (bivalves or
Sabellaria).  

In the Wadden Sea and the North Sea, Magallana gigas overgrows mussel beds in the intertidal
zone (Diederich 2005, 2006; Kochmann et al. 2008), although they did show a preference for
settling on conspecifics before the mussels and struggled to settle on mussels with a fucoid
covering. However, recruitment of Magallana gigas was significantly higher in the intertidal than
the shallow subtidal, although the survival of adult oysters or mussels in the subtidal is limited by
predation.

Crepidula fornicata is known to colonize and smother a wide range of sediments in the subtidal,
from mixed sediments to mud, especially in prior shellfish beds (e.g. of oysters and mussels)
(Blanchard, 1997; Minchin et al., 1995). Crepidula fornicata larvae may out-compete oyster
(Magallana gigas) larvae during summer months where the two species co-occur. Trophic
competition between adult Crepidula fornicata and Magallana gigas was reported in France during
winter and spring. In Mont Saint-Michel Bay, France, slipper limpet populations have affected
flatfish populations. Changes in habitat structure and reduced abundance of suspension feeding
organisms upon which the flatfish feed were linked to slipper limpet extent (Decottignies et al.,
2007; Blanchard et al. 2008; and Kostecki et al., 2011 cited in Sewell & Sweet, 2011).

Sensitivity assessment. Magallana gigas is predicted to invade sedimentary habitats, although no
direct examples exist to date and Magallana gigas recruitment is lower in the subtidal (Diederich
2005, 2006; Padilla, 2010). Crepdiula fornicata is a major invader and colonizer of subtidal
sediments. However, both species require hard substrata in the form of stones, debris or,
preferably, the shells conspecifics to colonize the habitat. This biotope is dominated by fine mud
and a shell fraction is not recorded in the description (Connor et al., 2004) but if artificial hard
debris (e.g. litter) was introduced to the habitat then it may provide an initial point for the
colonization of Crepidula in particular. Although it would probably take many years, colonization by
Crepidula would result in the complete modification of the habitat, reclassification and loss of the
biotope, although a population of Arenicola marina may survive in the sediment itself.  Therefore, a
precautionary resistance of Low has been suggested with ‘Low’ confidence due to the lack of direct
evidence. Resilience is likely to be Very low as a bed of Crepidula or Magallana gigas would need to
be removed before recovery could begin. Therefore, sensitivity is assessed as High.

Introduction of microbial
pathogens

No evidence (NEv) Not relevant (NR) No evidence (NEv)
Q: NR A: NR C: NR Q: NR A: NR C: NR Q: NR A: NR C: NR

Ashworth (1904) recorded the presence of distomid cercariae and Coccidia in Arenicola marina
from the Lancashire coast. However, no information concerning infestation or disease related
mortalities was found.

Removal of target
species

Low Medium Medium
Q: High A: Medium C: Medium Q: High A: High C: High Q: High A: Medium C: Medium

McLusky et al. (1983) examined the effects of bait digging on blow lug populations in the Forth
estuary. Dug and infilled areas and unfilled basins left after digging re-populated within 1 month,
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whereas mounds of dug sediment took showed a reduced population. The basins accumulated fine
sediment and organic matter and showed increased population levels for about 2-3 months after
digging.

Fowler (1999) reviewed the effects of bait digging on intertidal fauna, including Arenicola marina.
Diggers were reported to remove 50 or 70% of the blow lug population. Heavy commercial
exploitation in Budle Bay in winter 1984 removed 4 million worms in 6 weeks, reducing the
population from 40 to <1 per m². Recovery occurred within a few months by recolonization from
surrounding sediment (Fowler, 1999). However, Cryer et al. (1987) reported no recovery for 6
months over summer after mortalities due to bait digging. Mechanical lugworm dredgers were
used in the Dutch Wadden Sea where they removed 17-20 million lugworms/year. However, when
combined with hand digging the harvest represented only 0.75% of the estimated population in
the area. A near doubling of the lugworm mortality in dredged areas was reported, resulting in a
gradual substantial decline in the local population over a 4 year period. The effects of mechanical
lugworm dredging are more severe and can result in the complete removal of Arenicola marina
(Beukema, 1995; Fowler, 1999). Beukema (1995) noted that the lugworm stock recovered slowly
reached its original level in at least three years.

Sensitivity assessment.  Recreational bait digging may remove a proportion of the population of
Arenicola but given its potential density, the effects may be minor.  However, if commercial bait
digging occurred in the shallow sublittoral, then a significant proportion of the population may be
removed.  The physical effects of removal are addressed under penetration above. However,
Arenicola marina is a bioturbator and ecosystem engineer and its removal would probably have a
significant effect on the nature of the sediment and the other species that could inhabit the
sediment. Hence, a resistance of Low is suggested. Resilience is probably Medium, due to the
isolated nature of the sea lochs and lagoons in which this biotope if found, and sensitivity is
assessed as Medium.

Removal of non-target
species

Low Medium Medium
Q: Low A: NR C: NR Q: High A: High C: High Q: Low A: Low C: Low

Arenicola marina is a bioturbator and ecosystem engineer and its incidental removal would
probably have a significant effect on the nature of the sediment and the other species that could
inhabit the sediment.  Hence, a resistance of Low is suggested. Resilience is probably Medium, due
to the isolated nature of the sea lochs and lagoons in which this biotope if found, and sensitivity is
assessed as Medium.  
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