

MarLIN Marine Information Network

Information on the species and habitats around the coasts and sea of the British Isles

A hydroid (Cordylophora caspia)

MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review

Dr Harvey Tyler-Walters & Paolo Pizzolla

2007-07-03

A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom.

Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1511]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk)

This review can be cited as:

Tyler-Walters, H. & Pizzolla, P., 2007. *Cordylophora caspia* A hydroid. In Tyler-Walters H. and Hiscock K. (eds) *Marine Life Information Network: Biology and Sensitivity Key Information Reviews*, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1511.2

The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk

(page left blank)

				See online review for distribution map
Underwater, close-u Photographer: Keith Copyright: Dr Keith	up view of <i>Cordylophora caspia</i>. n Hiscock Hiscock		Distribut Biogeogr interroga	ion data supplied by the Ocean aphic Information System (OBIS). To ate UK data visit the NBN Atlas.
Researched by	Dr Harvey Tyler-Walters & Paolo Pizzolla	Refereed	by	This information is not refereed.
Authority	(Pallas, 1771)			
Other common names	-	Synonyms	5	Cordylophora lacustris (Pallas, 1771)

Summary

Description

A tall erect colony growing up to 10 cm high, branching occasionally from alternate sides and light horn to light brown in colour. Each branch is ringed at the base and has a terminal polyp. The polyps are white to pale pink and have 12 -16 long, colourless, extensile tentacles arranged irregularly on the surface of the polyp. The mouth is born on a conical but truncated proboscis. Each branch bears one to three pear-shaped reproductive bodies on short stalks. It produces a planula larvae but no free-living medusoid stage.

Q Recorded distribution in Britain and Ireland

The species has a sporadic distribution associated with areas of low salinity within estuaries and brackish lagoons.

Q Global distribution

Found in estuarine, lagoonal and coastal lake habitats in boreal to subtropical waters.

🖌 Habitat

This hydroid colonizes brackish waters of 2 -12 psu but, where salinity may rise, occasionally up to 35 psu. It is found in shallow depths, often in shade, on various hard substrata, submerged vegetation, and the shells of crabs and snails.

↓ Depth range

Low shore to ca 2m.

Q Identifying features

- Tall, erect colony ensheathed in perisarc.
- Polyps terminal with 12-16 tentacles.
- Polyps naked (athecate).
- Reproductive polyps (gonopores) pear-shaped.

<u><u></u> Additional information</u>

No text entered

✓ Listed by

% Further information sources

Search on:

Biology review

E Taxonomy

	Phylum	Cnidaria		Sea anemones, corals, sea firs & jellyfish
	Class	Hydrozoa		White weeds, sea firs, sea beard and siphonophores; hydroids
	Order	Anthoatheca	ata	
	Family	Cordylophor	idae	
	Genus	Cordylophor	a	
	Authority	(Pallas, 1771)	
	Recent Synonyms	Cordylophor	a lac	ustris (Pallas, 1771)
-	Biology			
,	Typical abundance	е	Мос	lerate density
	Male size range			
	Male size at maturity			
	Female size range Sma		Sma	ll-medium(3-10cm)
	Female size at ma	nale size at maturity		
	Growth form		Turf	
	Growth rate		ca O	.05-0.1mm/hr
	Body flexibility		High	n (greater than 45 degrees)
	Mobility Characteristic feeding method ^{Pa:}			
			Pass info	sive suspension feeder, Predator, See additional rmation
	Diet/food source			
	Typically feeds on	I	Sma and	ll zooplankton, small crustacea, oligochaetes, insect larvae probably detritus.
	Sociability			
	Environmental po	sition	Epib	enthic
	Dependency		Inde	ependent.
	Supports		Non	e
	Is the species harr	nful?	No	

<u>m</u> Biology information

Growth form

Growth form is highly variable in *Cordylophora caspia*. The colony of consists of a mass of stolons (hydrorhizae) growing across the surface of the substratum. Growth is apical, with side stolons arising at right angles. Upright hydrocauli bear apical polyps (hydranths), and side branches at 45° (Fulton, 1961). The degree of branching, length and spacing of hydrocauli, cell size, size and shape of polyps and the number and length of tentacles vary with environmental conditions (Fulton, 1962; Kinne, 1970, 1971; Arndt, 1989). For example, colonies have short, polyps that grow directly from the hydrorhiza at 0.5psu; more elongate polyps with longer tentacles and multiply branched uprights at 15psu, but smaller polyps and less branched uprights at 30psu than at 15psu (see Kinne

1970, 1971 for review; Arndt, 1989, Gili & Hughes, 1995). Gaulin *et al.* (1986) noted that predation by the nudibranch *Tenellia fuscata* resulted in denser colonies.

Growth rates

Growth rates are variable depending on environmental or laboratory conditions. Growth in number of polyps is exponential, the colonies doubling in polyp number every 2-4 days, although growth rate can very as much as two-fold even under standard conditions (Fulton, 1961, 1962). In addition, although old colonies could reach as much as 2000 polyps in size growth rates decreased with age (Fulton, 1962). Fulton (1961) reported that uprights grew at 0.05mm/hr while stolons extension rates vary from 0.1mm/hr (Fulton, 1961) to 2-3mm³/day (Chester *et al.*, 2000). Fulton (1962) reported that growth rates varied with temperature, salinity, ionic composition, oxygen tension and feeding rate (see sensitivity).

Seasonal changes

Cordylophora caspia dies back in late autumn and overwinters as dormant stolons and resting stages (menonts) inside the remnants of the uprights (see Roos, 1979 for figure; Arndt, 1989; Jormalainen *et al.*, 1994). Arndt (1989) reported that colonies died back in autumn when the temperature fell to about 10°C only to germinate in spring when the temperature exceeded 5°C. Roos (1979) reported that colonies died back in October and new polyps budded again in early spring in the Netherlands. In the Baltic Sea growth was maximal in spring, uprights reaching maximal height at the peak of sexual reproduction in July, with a decline after sexual reproduction, and subsequent growth in August (Jormalainen *et al.*, 1994). However, in one year, Jormalainen *et al* (1994) noted that the colonies regressed to the dormant condition after sexual reproduction then started growing again by mid August.

Feeding

Hydroids are passive carnivores that capture prey that swim into, or are brought into contact with their tentacles by currents. Prey are then killed or stunned by the nematocysts born on the tentacles and swallowed. Diet varies but is likely to include small zooplankton (e.g. nauplii, copepods), small crustacea, chironomid larvae, detritus and oligochaetes, but may include a wide variety of other organisms such as the larvae or small adults of numerous groups (see Gili & Hughes, 1995).

🐱 Habitat preferences

Physiographic preferences	Sea loch / Sea lough, Ria / Voe, Estuary, Isolated saline water (Lagoon), Enclosed coast / Embayment
Biological zone preferences	Lower eulittoral, Lower infralittoral, Sublittoral fringe, Upper infralittoral
Substratum / habitat preferences	Artificial (man-made), Bedrock, Caves, Cobbles, Large to very large boulders, Overhangs, Pebbles, Small boulders, Under boulders
Tidal strength preferences	Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.)
Wave exposure preferences	Extremely sheltered, Very sheltered
Salinity preferences	Low (<18 psu), Reduced (18-30 psu)
Depth range	Low shore to ca 2m.

Other preferences Migration Pattern

No text entered

Habitat Information

Habitat preferences

The distribution of Cordylophora caspia is determined by availability of suitable hard substratum, food availability, range and variability of temperature and salinity. Cordylophora caspia can survive between -10 °C (as resistant dormant stages, menonts) and 35 °C. Colonies tolerate 5 to 35 °C, and reproduce between 10 to 28 °C. It can also survive 0 to 35psu as resistant stages, grow between 0.2 to 30 psu, reproduce between 0.2 to 20psu and possesses the ability to ionic regulate (Kinne, 1971; reviewed by Arndt, 1986, 1989). In nature, well developed colonies are usually found in water of 2 -12psu where tidal influence is considerable or between 2 -6psu where conditions are constant (Arndt, 1989). It may also occur at full salinities, and fast flowing, well oxygenated freshwater containing Ca, Mg, Na Cl and K ions (Fulton, 1962; Arndt, 1989). Arndt (1986, 1989) suggested that respiration, growth and reproduction were optimal between 4-7psu and that food intake was high in comparison to other hydroids so that growth and reproduction rates required for the survival of the species could only occur in eutrophic or hypertrophic waters where food is plentiful. Its marine distribution is probably limited by food availability, competition from Clava spp. or Laomedea spp. and predation e.g. from the nudibranch Tenellia adspersa (as Embletonia pallida) (Arndt, 1989). Cordylophora caspia prefers conditions of low light (Allman, 1871-1872, Arndt, 1989), although light intensity did not affect growth (Fulton, 1963), which probably reflects the settlement preferences of the planula larvae.

Substrata

Most hydroids do not show a high specificity of substrata. *Cordylophora caspia* has been recorded from a wide variety of hard substrata including rocks, shells and artificial substrata (pilings, harbour installations, bridge supports), floating debris and occasionally from the leaves of reeds (*Phragmites*) or stalks of water lilies (MBA, 1957; Roos, 1979; Morri & Boero, 1986; Arndt, 1986, 1989; JNCC, 1999; Foster-Smith, 2000).

Non-native status

Cordylophora caspia was thought to have been introduced to British waters on foreign timber (Allman, 1871-1872). *Cordylophora caspia* was introduced into the Baltic Sea in ca 1803 and was reported as an alien species in the Baltic Sea and the Chesapeake Bay region, USA (Folino, 1999 (summary only); Olenin *et al.*, 2000). Folino (1999, summary only) suggested that the distribution of *Cordylophora* spp. was expanding globally due to increased boat travel and ballast discharge.

P Life history

Adult characteristics

Reproductive type Reproductive frequency Fecundity (number of eggs) Generation time Age at maturity Vegetative Annual episodic See additional information <1 year Less than 1 month.

Season	Spring - Autumn
Life span	See additional information
Larval characteristics	
Larval/propagule type	-
Larval/juvenile development	Direct development
Duration of larval stage	< 1 day
Larval dispersal potential	<10 m
Larval settlement period	See additional information

<u><u></u> Life history information</u>

Most hydroids (including *Cordylophora caspia*) are dioecious. The reproductive organs are carried in gonophores. Sperm are released into the sea and eggs are fertilized within the female gonophores where the embryos develop into planulae. Sperm swim towards female gonophores, however, sperm probably have a limited lifespan and hence a limited range for fertilization of only a few metres. Hence the growth of hydroids in clumps may enhance fertilization rates, albeit at the cost of intraspecific competition. Temperature is critical for stimulating or preventing reproduction in hydroids (see distribution; Gili & Hughes, 1995).

Sexual reproduction

Early seasonal growth from winter dormancy in early spring is rapidly followed by formation of gonophores and sexual reproduction in midsummer followed by active growth in late summer. However, sexual reproductive effort may retard growth (see general biology). Jormalainen *et al.* (1994) reported that reproduction began in early June, peaked in July (80% uprights with gonophores) and rapidly reduced by August (30% uprights with gonophores). Similar reproductive periods have been reported by other authors (Allman, 1871-1872; MBA, 1957; Roos, 1979; Foster-Smith, 2000). Roos (1979) and Jormalainen *et al.* (1994) reported that the sex ratio was biased in favour of females.

Each upright branch may bear between 1-3 gonophores each with between 10 - 6 eggs, the number decreasing in autumn (Hincks, 1868; Jormalainen *et al.*, 1994). Therefore, fecundity is dependant on the number of branches and hence the number of gonophores, and in large colonies of 70-2000 polyps (Fulton, 1962), may be high. The larvae are released as planulae and no medusoid stage occurs. However, in some cases the larvae may develop directly into juvenile polyps in the gonophore before release (Bouillon, 1963).

Asexual reproduction

Hydroids may reproduce asexually by budding to from another colony. A common form of asexual reproduction in hydroids is the formation of vertical stolons, which then adhere to adjacent substratum, detach and form another colony (Gili & Hughes, 1995). Hydroids exhibit remarkable powers of regeneration and *Cordylophora caspia* can be cloned in culture from detached uprights or excised tissue (Moore, 1952;Fulton, 1961, 1962). Asexual reproduction by fission or mechanical fragmentation of the colony may be an important factor in dispersal (Gili & Hughes, 1995).

Longevity

While uprights have a short, finite lifespan from about early spring to autumn, no information concerning the lifespan of the dormant stages (menonts) was found. Unless destroyed by predators or physical damage, the colony may have a long lifespan (perhaps very long (Gili &

Hughes, 1995). The ability to reproduce asexually and regenerate from damaged sections means that although any individual colony may have a finite lifespan the genetic individual (genet) may be considerably longer lived (Gili & Hughes, 1995).

Dispersal

Rapid growth, budding and the formation of stolons allows hydroids to colonize space rapidly. Hydroids are often the first organisms to colonize available space in settlement experiments (Gili & Hughes, 1995). Planula larvae swim or crawl for short periods (e.g. <24hrs) so that dispersal away from the parent colony is probably very limited (Gili & Hughes, 1995). Fragmentation may also provide another route for short distance dispersal. However, it has been suggested that rafting on floating debris (or hitch hiking on ships hulls or in ship ballast water) as dormant stages or reproductive adults, together with their potentially long lifespan, may have allowed hydroids to disperse over a wide area in the long-term and explain the near cosmopolitan distributions of many hydroid species, including *Cordylophora caspia* (Gili & Hughes, 1995; Folino, 1999).

Sensitivity review

This MarLIN sensitivity assessment has been superseded by the MarESA approach to sensitivity assessment. MarLIN assessments used an approach that has now been modified to reflect the most recent conservation imperatives and terminology and are due to be updated by 2016/17.

A Physical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Substratum Loss	High	High	Moderate	Moderate
Removal of the substra resting stages. Therefo whether nearby colonic recoverability will be ra growing seasons to ach has been completely de information below).	atum would result in the ore, an intolerance of hig es or colonies within the apid, although the origin nieve, and an intolerance estroyed recoverability o	loss of colonies, h has been recor same water bod al population ab of high has beer will be low or not	their hydrorh ded. Recovery ly have surviv undance may recorded. If t at all (see add	izae and any / will depend on ed. If so, take several the population ditional
Smothering	Low	Immediate	Not sensitive	Low
avoid the possibility of Smothering by 5cm of s colony, preventing feed hypoxic conditions are is likely to become dorn rapidly once the sedime represent the affects o Recovery is likely to be	siltation and smothering sediment (see benchmar ding and hence reducing also likely to inhibit grov mant, or otherwise survi ent is removed. Therefo of smothering on growth e immediate (see addition	g and competitio rk) is likely to cov growth and repr wth (Fulton, 196 ive for a period o re, an intolerance nal information b	n from macro er a large pro oduction. In a 1, 1963). How f at least a mo e of low has be pelow).	algae. portion of the Iddition, local /ever, the colony Inth, and recover een recorded to
Increase in suspended sedir	ment Tolerant	Not relevant	Not sensitive	Low
Cordylophora caspia is f characterized by high s saltmarsh pools (JNCC by siltation. Therefore, sediment loads at the b	ound in estuarine and sh suspended sediment load (, 1999) and saltmarshes , Cordylophora caspia is p penchmark level.	neltered lagoonal ds. Cordylophora are a deposition robably tolerant	habitats, whi caspia was als al environme of increases i	ch are o reported in nt characterized n suspended
Decrease in suspended sed	iment <mark>Low</mark>	Immediate	Not sensitive	Low
A reduction in suspend decrease in suspended hence reduce food avai high food requirement any reduction in food a likely to be immediate.	led sediment is unlikely t sediment may also redu ilability. Arndt (1986, 19 for growth and reprodu availability and an intoler	to directly affect ice the availabilit 989) suggested th iction. It is theref rance of low has l	Cordylophora y of organic p nat Cordylopho ore, likely to b been recordeo	<i>caspia</i> . A articulates and o <i>ra caspia</i> had a oe intolerant of d. Recovery is
Dessication	High	High	Moderate	Low
Intertidal populations of underboulders and over water on emersion (see	of Cordylophora caspia ar erhangs. The branched g e image). However, an in	e restricted to da rowth form of th crease in desicca	amp habitats s is species is lil ition at the be	such as kely to retain nchmark level is

likely to result in drying and death of the uprights. Increased desiccation may result in the

https://www.marlin.ac.uk/habitats/detail/1511

formation of resistant, dormant stages, however, no information on their desiccation tolerance was found. Therefore, an intolerance of high has been recorded. If hydrorhizae or dormant stages survive recovery is likely to be very rapid and colonies may appear rapidly once conditions return to their prior state. If, resting stages are destroyed then recovery will depend on recruitment from nearby subtidal colonies, and is likely to be rapid, although the original population abundance may take several growing seasons to achieve (see additional information below).

Increase in emergence regime Intermediate Very high Low Low

An increase in emergence is likely to adversely affect colonies. While *Cordylophora caspia* would probably survive the extremes of temperature resulting form increased emergence (see below), colonies are likely to succumb to increased desiccation (see above) if increased emergence exposes them to mid shore (or higher) conditions. Therefore, the upper shore proportion of the population is likely to be lost and an intolerance of intermediate has been recorded. Recoverability is likely to be very high (see additional information below).

Decrease in emergence regime Tolerant* Not relevant Not sensitive* Low

A decrease in emergence is likely to increase the availability of suitable habitats and may allow the population to extend its range. Therefore, tolerant* has been recorded.

Increase in water flow rate Low Very high Very Low

Low

Water movement is essential for hydroids to supply adequate food, remove metabolic waste products, prevent accumulation of sediment and disperse larvae or medusae. Hydroids are expected to be abundant where water movement is sufficient to supply adequate food but not cause damage (Hiscock, 1983; Gili & Hughes, 1995). Flexibility of the otherwise rigid perisarc of hydroids is provided by annulations at the base of branches in Cordylophora caspia. In addition, in athecates, the neck of the polyp is flexible enough to allow the polyp adopt an efficient 'lee-side' feeding posture in water flow. However, most hydroids have a narrow range of water flow rates for effective feeding. For example in the athecate Tubularia indivisa, food capture rate increased up to 20cm/s, but decreased as water flow rates increased (Hiscock, 1983). In Cordylophora inkermania food capture rates were higher in fluctuating flows than in unidirectional flows (Gili & Hughes, 1995), presumably because more polyps were brought into play in fluctuating flow, than in unidirectional flow where upstream branches 'shaded' down stream branches. Loomis (in Fulton, 1961) noted that Cordylophora caspia did not grow in still water cultures presumably because of the build up of CO_2 from respiration. Cordylophora caspia was reported to dominate steep rock surfaces in strong tidal flows in the Tamar (JNCC, 1999). Although Cordylophora caspia tolerates strong water flow, a further increase in water flow to very strong is likely to reduce feeding efficiency and hence growth and reproduction and may even remove or damage colonies. Damaged colonies may survive as resting stages until water flow rates return to prior condition. Therefore, intolerance has been assessed as low and recoverability as very high (see additional information below).

Decrease in water flow rate

Water movement is essential for hydroids to supply adequate food, remove metabolic waste products, prevent accumulation of sediment and disperse larvae or medusae (see above). *Cordylophora caspia* has been recorded from areas of negligible or weak water flow, e.g. saline lagoons. A further decrease in water flow is unlikely, although Loomis (in Fulton, 1961) noted that colonies did not grow in still water cultures presumably because of the build up of CO₂ from respiration. Therefore, an intolerance of low has been recorded. Recovery is likely to be very high (see additional information below).

Immediate

Not sensitive

Low

Low

Increase in temperature

Cordylophora caspia can survive as resistant dormant stages (menonts) at -10 °C and at 35 °C.

Not relevant

Not sensitive

High

Tolerant

and fragments of colonies remaining may contribute to the recovery, although the original population abundance may take several growing seasons to achieve. Therefore, a recoverability of high has been suggested.

Tolerant*

Decrease in wave exposure

Cordylophora caspia has only been recorded from very or extremely wave sheltered habitats

Not relevant

Not sensitive* Not relevant

(JNCC, 1999). A decrease in wave exposure may allow the species to colonize additional habitats and increase its extent. Therefore, tolerant* has been recorded.

Not relevant Noise High Tolerant Not sensitive Hydroids are unlikely to be sensitive to noise or vibration at the benchmark level.

Tolerant

Hydroid polyps may retract when shaded by potential predators, however hydroids are unlikely to be affected by visual presence.

Abrasion & physical disturbance Intermediate Very high Low Low

Abrasion by an anchor or fishing gear is likely to remove relatively delicate upright parts of the colony. However, the surface covering of hydrorhizae may remain largely intact, from which new uprights are likely to grow. In addition, the resultant fragments of colonies may be able to develop into new colonies (see displacement). Populations on small hard substrata (e.g. cobbles, pebbles or stones) may be removed by fishing gear, constituting substratum loss (see above). Overall, a proportion of the colonies is likely to be destroyed and an intolerance of intermediate has been recorded. However, recovery from surviving hydrorhizae and occasional fragments is likely to be rapid (see additional information below).

Displacement

Visual Presence

Intermediate Very high

Not relevant

Low

Not sensitive

High

Cordylophora caspia colonies have been cultured by securing cut uprights to slides to which they subsequently attach. Fragmentation is thought to be a possible mode of asexual reproduction in hydroids (Gili & Hughes, 1995). Therefore, it is possible that a proportion of displaced colonies (or fragments thereof) may attach to new substrata and an intolerance of intermediate has been recorded. Recovery is likely to be rapid (see additional information below).

囚 Chemical Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Synthetic compound contamination	Low	Immediate	Not sensitive	Very low
The species richness of hydroid of species adapted to a wide variati distributions tend to be more tol Stebbing (1981) reported that Co <i>Laomedea</i> (as <i>Campanularia</i>) flexu reported that virtually no hydroi contaminated sites and suggester 100 and 500 ng/l.	communities de on in environn erant of pollut u, Cd, and tribu losa resulting in ds were presen ed that some hy	ecreases with inc nental factors an ed waters (Boero utyl tin fluoride a n increased grow nt on hard bottor ydroids were sen	creasing pollution d with cosmopoly o, 1984; Gili & H ffected growth th. Bryan & Gik m communities sitive to TBT le	on but hydroid olitan Hughes, 1995). regulators in obs (1991) in TBT vels between

However, Calder (1976) suggested that hydroids found in the low salinity areas of south Carolina, such as Cordylophora caspia, were also present in relatively polluted waters, such as Charleston Harbour. Cordylophora caspia was also a dominant species on settlement plates placed on a floating shipyard dock in Warnock river (Sandrock et al., 1991). Floating docks are likely to result in local contamination with heavy metals and antifouling agents from ship paints, as well as oils and other chemicals used in ship maintenance. As a member of fouling communities, Cordylophora caspia is probably less intolerant of antifouling measures than other hydroids. Therefore, an intolerance of low has been suggested albeit at very low confidence.

Heavy metal contamination

Low

Immediate

Stebbing (1981) reported that Cu, Cd, and tributyl tin fluoride affected growth regulators in *Laomedea* (as *Campanularia*) *flexuosa* resulting in increased growth. Ringelband (2001), however, reported that 1.74-7.96 mg/l vanadium inhibited growth of *Cordylophora caspia* at low salinities. Various heavy metals have also been show to have sublethal effects on growth in the few hydroids studied experimentally (Bryan, 1984). Therefore, an intolerance of low has been recorded.

Hydrocarbon contamination

Low

Immediate

Not sensitive Very low

Little information of the effects of hydrocarbons on hydroids was found. Hydroid species adapted to a wide variation in environmental factors and with cosmopolitan distributions tend to be more tolerant of polluted waters (Boero, 1984; Gili & Hughes, 1995). Calder (1976) suggested that hydroids found in the low salinity areas of south Carolina, such as *Cordylophora caspia*, were also present in relatively polluted waters, such as Charleston Harbour. *Cordylophora caspia* was also a dominant species on settlement plates placed on a floating shipyard dock in Warnock river (Sandrock *et al.*, 1991). Floating docks are likely to result in local contamination with heavy metals and antifouling agents from ship paints, as well as oils and other chemicals used in ship maintenance. However, the above evidence is primarily anecdotal.

The water soluble fractions of Monterey crude oil and drilling muds were reported to cause polyp shedding and other sublethal effects in the athecate *Tubularia crocea* in laboratory tests (Michel & Case, 1984; Michel *et al.*, 1986; Holt *et al.*, 1995). The athecate *Cordylophora caspia* may show similar sublethal effects assuming similar physiology. Therefore, an intolerance of low has been recorded albeit with a very low confidence.

Tolerant*

Radionuclide contamination

Not relevant

Not relevant

Insufficient information

Changes in nutrient levels

Cordylophora caspia became one of the dominant species to colonize settlement plates placed beneath a floating dock in the Warnock river (Sandock *et al.*, 1991). This station was characterized by low salinities, and higher organic and mineral nutrient loads (ca 20-100 μ mol NO₃/l) than their other experimental station. Arndt (1986, 1989) suggested that food intake in *Cordylophora caspia* was high in comparison to other hydroids so that growth and reproduction rates required for the survival of the species could only occur in eutrophic or hypertrophic waters where food is plentiful. Therefore, *Cordylophora caspia* is likely to tolerate relatively high nutrient levels, and may benefit from moderate increases in nutrients at the benchmark level. Hence, tolerant* has been recorded.

Increase in salinity

Intermediate Very high

Cordylophora caspia can survive 0 to 35psu as resistant stages, grow between 0.2-30 psu, reproduce between 0.2-20psu and possesses the ability to ionic regulate (Kinne, 1971; reviewed by Arndt, 1986, 1989). In nature, well developed colonies are usually found in water of 2 -12psu where tidal influence is considerable or between 2 -6psu where conditions are constant (Arndt, 1989) but it may also occur at full salinities. Kinne (1971) noted that high salinities (24 or 30psu) occasionally resulting in developmental abnormalities in older colonies in the laboratory.

Arndt (1989) suggested that its marine distribution was probably limited by food availability, competition from *Clava* spp. or *Laomedea* spp. and predation e.g. from the nudibranch *Tenellia adspersa* (as *Embletonia* pallida).

Therefore a short term increase in salinity (at the benchmark level) is likely to affect growth

Moderate

Low

Not relevant

Not sensitive* Moderate

and reproduction but otherwise not adversely affect colonies. However, a change in salinity from reduced to variable in the long term (see benchmark) may result in loss of a proportion of the population, and an intolerance of intermediate has been recorded. Survival of resting stages is likely to result in rapid recovery (see additional information below).

Decrease in salinity

Tolerant*

Low

Not relevant

Not sensitive* High

Not sensitive

High

Cordylophora caspia can survive 0 to 35psu as resistant stages, grow between 0.2-30 psu, reproduce between 0.2-20psu and possesses the ability to ionic regulate (Kinne, 1971; reviewed by Arndt, 1986, 1989). In nature, well developed colonies are usually found in water of 2 -12psu where tidal influence is considerable or between 2 -6psu where conditions are constant (Arndt, 1989). It may also occur at full salinities, and fast flowing, well oxygenated freshwater containing Ca, Mg, Na, Cl and K ions (Fulton, 1962; Arndt, 1989). It has been reported from estuaries that receive significant seasonal freshwater input, and tolerates variable salinities (Arndt, 1986; 1989). Therefore, it is probably relatively tolerant of a change in salinity at the benchmark level. A reduction from full to reduced salinity may be beneficial and allow *Cordylophora caspia* to colonize new habitats. Therefore, not sensitive* has been recorded.

Immediate

Changes in oxygenation

Fulton (1962) found that some polyps of *Cordylophora caspia* fell off or were reabsorbed after 7 days in the complete absence of oxygen, however, the remaining polyps began feeding shortly after the re-introduction of oxygen. Fulton (1962) concluded that *Cordylophora caspia* had a low oxygen requirement for growth and was able to grow at oxygen levels of >2mg/l (ca 1.4ml/l). Arndt (1986) reported that an increase in temperature from 10 to 20 °C resulted in a marked increase in metabolic rate and hence oxygen consumption. Similarly, metabolic rates increased at supra- or subnormal salinities (Arndt, 1986) and *Cordylophora caspia* may be more intolerant of low oxygen concentrations at high temperatures and extreme salinities. However, the isolated saline waters, the upper reaches of estuaries and saltmarsh pools, in which *Cordylophora caspia* occurs, are likely to experience high summer temperatures and hence low oxygen levels. Therefore, *Cordylophora caspia* is likely to survive exposure to low oxygen concentrations at the benchmark level, although growth is likely to be reduced, and an intolerance of low has been recorded.

Biological Pressures

	Intolerance	Recoverability	Sensitivity	Confidence
Introduction of microbial pathogens/parasites		Not relevant		Not relevant
No information found.				
Introduction of non-native species		Not relevant		Not relevant
<i>Cordylophora caspia</i> is a non-native species (Allman, 1871-1872). But has not been reported to compete with other species, including other non-native species, in British or Irish waters.				
Extraction of this species	Not relevant	Not relevant	Not relevant	Not relevant
Hydroids are not known to be subject to specific extraction.				
Extraction of other species	Not relevant	Not relevant	Not relevant	Not relevant
<i>Cordylophora caspia</i> is not knowr extraction.	n to be associate	ed with species	or habitats subj	ect to

Additional information

intolerance assessment

Cordylophora caspia and other hydroids have the ability to produce dormant resting stages (menonts) that are far more resistant to environmental change than the colony itself. Therefore, although colonies may be removed or destroyed, the resting stages may survive in remnants of the hydrorhizae attached to the substratum. For the sake of assessment, the intolerance of the branched colonies themselves (the clearly visible component) has been recorded. The resting stages provide a mechanism for rapid recovery.

Recoverability

Hydroids are often initial colonizing organisms in settlement experiments and fouling communities (Jensen *et al.*, 1994; Hatcher, 1998). In settlement experiments in the Warnow estuary, *Cordylophora caspia* was found to colonize artificial substrata within ca one month of deployment, its abundance increasing from June to the end of September with a peak in July (Sandrock *et al.*, 1991). Long term panels at the low salinity station became dominated by *Cordylophora caspia*, *%Balanus improvisus%* and *%Nais elinguis%*. Similarly, Roos (1979) reported that *Cordylophora caspia* recruited to and grew luxuriantly on water lily stalks in summer after early reproduction of nearby colonies in early spring. Therefore, it is likely that *Cordylophora caspia* will recruit to available space rapidly in its growing season, in the vicinity of other populations. Once colonized the hydroids ability to grow rapidly and reproduce asexually is likely to allow it to occupy space and sexually reproduce quickly, possibly recruiting to additional space before dying back in winter. Therefore, where colonies or dormant resting stages are present in the habitat, or within isolated habitats (e.g. lagoons), recovery is likely to be rapid and occur within less than a year.

Long distance dispersal is probably limited in hydroids, including *Cordylophora caspia*. Long distance dispersal is probably dependant on passive dispersal by currents on floating debris or shipping. Although, *Cordylophora caspia* has probably been introduced to the coasts of several countries (e.g. Chesapeake Bay USA and the Baltic Sea), passive transportation is a sporadic and un-predictable event. Therefore, if the whole population is destroyed, and resting stages removed, recolonization rates will depend on distance from nearby colonies, and may take many years. In isolated habitats such as lagoons and coastal lakes, recruitment from other areas may take a many decades or not occur at all.

Importance review

Policy/legislation

- no data -

*	Status National (GB) importance	-	Global red list (IUCN) category	
NIS	Non-native Native	Non-native		

Native	Non-native		
Origin	East Europe, Soviet Middle Asia	Date Arrived	1868

1 Importance information

Hydroids are preyed on by chitons, gastropods (especially nudibranchs), polychaetes and pycnogonids (Gili & Hughes, 1995). For example, the pycnogonid *Anoplodactylus* sp. was reported to feed on *Cordylophora caspia* in Australasia (Staples & Watson, 1987) and may do so in the British Isles.

The life cycle of nudibranchs is often closely linked with the seasonal availability of their preferred prey. Arndt (1989) noted that the marine distribution of *Cordylophora caspia* was limited in part by predation by the nudibranch *Tenellia adspersa* (as *Embletonia pallida*). Gaulin *et al.* (1986) noted that a healthy colony would survive limited nudibranch predation by *Tenellia fuscata* but be removed by large numbers of predators. For example, Chester *et al.* (2000) suggested that *Tenellia adspera* showed rapid population growth, removing the hydroid and preventing its reestablishment. Nudibranch predation is probably an important factor limiting the presence of hydroids in early community succession, removing the hydroids and allowing colonization of other species.

Bibliography

Allman, G.J., 1871-1872. A monograph of the Gymnoblastic or Tubularian hydroids, Vol. I & II. London: Ray Society.

Arndt, E.A., 1984. The ecological niche of Cordylophora caspia (Pallas, 1771). Limnologica, 15, 469-477.

Arndt, E.A., 1989. Ecological, physiological and historical aspects of brackish water fauna distribution. In *Proceedings of the 23rd European Marine Biology Symposium, Swansea, 5-9 September 1988. Reproduction, Genetics and Distribution of Marine Organisms,* (ed. J.S. Ryland & P.A. Tyler), pp. 327-338. Denmark: Olsen & Olsen.

Barnes, R.S.K., 1994. The brackish-water fauna of northwestern Europe. Cambridge: Cambridge University Press.

Boero, F., 1984. The ecology of marine hydroids and effects of environmental factors: a review. Marine Ecology, 5, 93-118.

Bouillon, J., 1963. Sur quelques particularités de la reproduction sexuée de Cordylophora caspia (Pallas 1771). Annales de la Société Royale Zoologique de Belgique, 93, 157-158.

Bryan, G.W. & Gibbs, P.E., 1991. Impact of low concentrations of tributyltin (TBT) on marine organisms: a review. In: *Metal ecotoxicology: concepts and applications* (ed. M.C. Newman & A.W. McIntosh), pp. 323-361. Boston: Lewis Publishers Inc.

Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In *Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters*, vol. 5. *Ocean Management*, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

Calder, D.R., 1976. The zonation of hydroid colonies along salinity gradients in South Carolina estuaries. In *Coelenterate ecology and behaviour* (ed. G.O. Mackie), pp. 165-174. New York: Plenum Press.

Campbell, R.D., 1974. Cnidaria. In Reproduction of marine invertebrates vol. I. Acoelomate and Pseudocoelomate metazoans (ed. A.C. Gieses & J.S. Pearse), pp. 133-199. New York: Academic Press.

Chester, C.M., Turner, R., Carle, M & Harris, L.G., 2000. Life history of a hydroid/nudibranch association: a discrete-event simulation. *Veliger*, **43**, 338-348.

Folino, N.C., 1999. The freshwater expansion and classification of the colonial hydroid *Cordylophora* (Phylum Cnidaria, Class Hydrozoa). In *Proceedings of the first National Conference*, *Massachusetts Institute of Technology*, *Cambridge*, MA, 1999. Marine *Bioinvasions*, pp. 139-144.

Foster-Smith, J. (ed.), 2000. The marine fauna and flora of the Cullercoats District. Marine species records for the North East Coast of England. Sunderland: Penshaw Press, for the Dove Marine Laboratory, University of Newcastle upon Tyne.

Fulton, C., 1961. The development of Cordylophora. In The biology of Hydra and some other coelenterates (ed. H.M. Lenholf & W.F. Loomis), pp. 287-295. Miami Florida: University of Miami Press.

Fulton, C., 1962. Environmental factors influencing the growth of Cordylophora. Journal of Experimental Zoology, 151, 61-78.

Gaulin, G., Dill, L., Beaulieu, J. & Harris, L.G., 1986. Predation-induced changes in growth form in a nudibranch-hydroid association. *Veliger*, **28**, 389-393.

Gili, J-M. & Hughes, R.G., 1995. The ecology of marine benthic hydroids. *Oceanography and Marine Biology: an Annual Review*, **33**, 351-426.

Hatcher, A.M., 1998. Epibenthic colonization patterns on slabs of stabilised coal-waste in Poole Bay, UK. *Hydrobiologia*, **367**, 153-162.

Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.

Hincks, T., 1868. A history of the British hydroid zoophytes, vol. I & II. London: van Voorst.

Jensen, A.C., Collins, K.J., Lockwood, A.P.M., Mallinson, J.J. & Turnpenny, W.H., 1994. Colonization and fishery potential of a coalash artificial reef, Poole Bay, United Kingdom. *Bulletin of Marine Science*, **55**, 1263-1276.

JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

Jormalainen, V., Honkanen, T., Vuorisalo, T. & Laihonen, P., 1994. Growth and reproduction of an estuarine population of the colonial hydroid *Cordylophora caspia* (Pallas) in the northern Baltic Sea. *Helgoländer Meeresuntersuchungen*, **48**, 407-418.

Kinne, O. (ed.), 1970. Marine Ecology: A Comprehensive Treatise on Life in Oceans and Coastal Waters. Vol. 1 Environmental Factors Part 1. Chichester: John Wiley & Sons

Kinne, O. (ed.), 1971a. Marine Ecology: A Comprehensive, Integrated Treatise on Life in Oceans and Coastal Waters. Vol. 1 Environmental Factors, Part 2. Chichester: John Wiley & Sons.

MBA (Marine Biological Association), 1957. *Plymouth Marine Fauna*. Plymouth: Marine Biological Association of the United Kingdom.

Michel, W.C. & Case, J.F., 1984. Effects of a water-soluble petroleum fraction on the behaviour of the hydroid coelenterate *Tubularia crocea*. *Marine Environmental Research*, **13**, 161-176.

Michel, W.C., Sanfilippo, K. & Case, J.F., 1986. Drilling mud evoked hydranth shedding in the hydroid *Tubularia crocea*. Marine *Pollution Bulletin*, **17**, 415-419.

Morri, C. & Boero, F., 1986. Catalogue of main marine fouling organisms, vol. 7. Hydroids. Bruxelles: Office d'Etudes Marine et

Atmosphériques.

Olenin, S., Daunys, D. & Dauniene, E., 2000. Baltic Sea alien species database. [On-line] http://www.ku.lt/nemo/mainnemo.htm, 2002-03-28

Ringelband, U., 2001. Salinity dependence of vanadium toxicity against the brackish water hydroid *Cordylophora caspia*. *Ecotoxicology and Environmental Safety*, **48**, 18-26.

Roos, P.J., 1979. Two-stage life cycle of a Cordylophora population in the Netherlands. Hydrobiologia, 62, 231-239.

Sandrock, S., Scharf, E-M., von Oertzen, J.A., 1991. Short-term changes in settlement of micro- and macro-fouling organisms in brackish waters. *Acta Ichthyologica et Piscatoria*, **21**(Suppl.), 221-235.

Sommer, C., 1992. Larval biology and dispersal of *Eudendrium racemosum* (Hydrozoa, Eudendriidae). *Scientia Marina*, **56**, 205-211. [*Proceedings of 2nd International Workshop of the Hydrozoan Society, Spain, September 1991. Aspects of hydrozoan biology* (ed. J. Bouillon, F. Cicognia, J.M. Gili & R.G. Hughes).]

Staples, D.A. & Watson, J.E., 1987. Associations between pycnogonids and hydroids. In *Modern trends in the systematics, ecology, and evolutions of hydroids and hydromedusae* (ed. J. Bouillon, F. Boero, F. Cicogna, P.F.S. Cornelius), pp. 215-226. New York: Oxford University Press.

Datasets

Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.

NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

Norfolk Biodiversity Information Service, 2017. NBIS Records to December 2016. Occurrence dataset: https://doi.org/10.15468/jca5lo accessed via GBIF.org on 2018-10-01.

OBIS (Ocean Biogeographic Information System), 2019. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2019-03-21

Suffolk Biodiversity Information Service., 2017. Suffolk Biodiversity Information Service (SBIS) Dataset. Occurrence dataset: https://doi.org/10.15468/ab4vwo accessed via GBIF.org on 2018-10-02.