BIOTIC Species Information for Chthamalus montagui
| |||
---|---|---|---|
Researched by | Karen Riley | Data supplied by | MarLIN |
Refereed by | Prof. Alan J. Southward | ||
General Biology | |||
Growth form | Conical |
Feeding method | Active suspension feeder |
Mobility/Movement | Permanent attachment |
Environmental position | Epifaunal Epilithic |
Typical food types | Plankton. | Habit | Attached |
Bioturbator | Not relevant | Flexibility | None (< 10 degrees) |
Fragility | Robust | Size | Small(1-2cm) |
Height | Insufficient information | Growth Rate | 10 - 55 µm / day |
Adult dispersal potential | None | Dependency | Independent |
Sociability | Gregarious | ||
Toxic/Poisonous? | No | ||
General Biology Additional Information | Feeding Chthamalus stellatus / Chthamalus montagui generally feed on small plankton. They can consume diatoms, but were found not to grow under a regime dominated by diatoms (Barnes & Barnes, 1965). Normal feeding of chthamalids involves a cirral beat. This cirral beat is also noted to be a respiratory mechanism (Anderson & Southward, 1987). However, in high wave exposure they tend to hold their cirri out stiffly against the water current for a long period of time, retracting when food is captured (Crisp, 1950). Barnacles living in wave exposed conditions may benefit from this passive suspension feeding habit where cirral beating and consequent energy expenditure are minimised (Crisp, 1950). Rates of cirral beat decrease with age and size, but increase with temperature (Anderson & Southward, 1987). Green (1961) reported that barnacles higher up on shore had a higher cirral beat frequency than those at lower levels. However, Southward (1955; 1964(b)) found no similar trends. Southward (1955) found that there was no cirral beat of Chthamalus stellatus / Chthamalus montagui in still water and that cirral beating was only induced at a current of approximately 10 cm / sec. The cirral beating frequency is also related to temperature, shown by experiments by Southward (1955). Chthamalus stellatus / Chthamalus montagui barnacles kept at a temperature of 0 °C did not react to touch after an hour. He also found that they remained inactive at a temperature up to 5 °C. Between 5 and 30 °C there was a linear increase to 10 beats every 10 seconds. This slowly declined above 33 °C and dropped rapidly at 36 °C. Although the species resisted coma above a temperature of 40 °C, all cirral beating ceased at 37.5 °C. Respiration Sessile barnacles have a pair of gills: pleats of the mantle wall, attached to the mantle cavity (Stubbings, 1975). Rainbow (1984) also stated that the cirri might also play an important role in respiration. There is usually a slow respiratory pumping beat, with varied emergence of the cirri. Moulting Barnacles need to moult in order to grow. Feeding rate and temperature determine the frequency of moulting. Moulting does not take place during winter when phytoplankton levels and temperatures are low (Crisp & Patel, 1960). Growth Once the barnacle is fixed in place it is unable to detach again (Crisp, 1955). All species grow faster in early life and slower in later life, and chthamalids tend to become tubular when crowded (Southward & Crisp, 1965). The growth rate varies with a variety of biological and environmental factors, including current flow, orientation with respect to current, food supply, wave exposure, shore height, surface contour, and intra- or inter-specific competition. Growth in Chthamalus spp. takes place along the whole internal surface of the one layered plates (Bourget, 1977). The growth rate for Chthamalus stellatus / Chthamalus montagui has been reported by Barnes (1956; Crisp & Bourget (1985) as between 10 - 55 µm per day (relatively slow) in the linear phase. Crisp (1950) noticed that Chthamalus stellatus / Chthamalus montagui reached a maximum size of 0.2 to 1.4 cm. Chthamalus stellatus / Chthamalus montagui was found to have a lower growth rate than many other species of barnacles (Relini, 1983). The species reached a basal diameter of 2-2.5 mm in 3 months, 3.5-4 one year later, up to 8 mm in the 2nd year of growth, but generally no more than about 5-6 mm (Relini, 1983). Sometimes a decrease in size was noticeable, due to abrasion. This low growth rate was found to be associated with a low metabolic rate, or low oxygen consumption, by Barnes & Barnes (1965). Parasites and epizoites Healy (1986, in O'Riordan et al., 1992) observed the parasitic isopod, Hemioniscus balani in Chthamalus stellatus and Chthamalus montagui in Ireland, although it was never present in Lough Hyne populations. However, Southward & Crisp (1954) found that although it attacks and sterilises Semibalanus balanoides individuals, it does not normally attack chthamalids on British shores. Further Information
|
||
Biology References | Burrows et al., 1992, Rainbow, 1984, Anderson & Southward, 1987, Southward, 1955, Stubbings, 1975, Crisp & Patel, 1960, Crisp, 1955, Southward & Crisp, 1965, Bourget, 1977, Barnes, 1956, Crisp & Bourget, 1985, Moore & Kitching, 1939, Fish & Fish, 1996, Southward, 1958, Bassindale, 1964, Kendall & Bedford, 1987, Southward & Crisp, 1954, Barnes & Barnes, 1965, Crisp, 1950, Relini, 1983, Gubbay, 1983, Barnes et al., 1963, Southward, 1964(b), Green, 1961, |