BIOTIC Species Information for Mya arenaria
| |||
---|---|---|---|
Researched by | Lizzie Tyler | Data supplied by | University of Sheffield |
Refereed by | This information is not refereed. | ||
General Biology | |||
Growth form | Bivalved |
Feeding method | Passive suspension feeder Active suspension feeder |
Mobility/Movement | Burrower |
Environmental position | Infaunal |
Typical food types | Phytoplankton, small zooplankton, benthic diatoms, suspended particulates and dissolved organic matter. | Habit | Burrow dwelling |
Bioturbator | Flexibility | None (< 10 degrees) | |
Fragility | Intermediate | Size | Medium(11-20 cm) |
Height | Insufficient information | Growth Rate | See additional information |
Adult dispersal potential | 100-1000m | Dependency | Independent |
Sociability | Solitary | ||
Toxic/Poisonous? | No | ||
General Biology Additional Information | Mya arenaria populations demonstrate pronounced patchiness, e.g. in the Dutch Wadden Sea its abundance varies from high to low. Patchiness seems to be typical in Mya arenaria and has been reported from Sweden and North America (Strasser et al.,1999; Strasser pers. comm.). Growth rates: Mya arenaria generally grows fastest in its first years with growth rate decreasing with age, although linear rates of growth have also been reported (Strasser, 1999). Growth is rapid in favourable conditions but rates vary with location, e.g. Mya sp. grew to 51 mm in 6-7 years in Alaska, but this size was attained in 1.5 years in Connecticut (Brousseau & Baglivo, 1987). Similarly, marketable size ( 4-5 cm long) was reached within 1.5 years in Chesapeake Bay, but took 5 years in New Brunswick, Canada. Growth rates are affected by population density, sediment type, salinity, emergence time, water flow rates, disturbance, latitude and pollution (Newell & Hidu, 1986; Strasser, 1999). Seasonal growth rates: growth is generally greatest in late spring and early summer and slowest in cold winters e.g. in New England (Newell & Hidu, 1986). Rapid growth is correlated with the phytoplankton bloom and therefore food availability but may also be affected by temperature and spawning (Stickney, 1964; Brousseau, 1979; Newell & Hidu, 1986). |
||
Biology References | Fish & Fish, 1996, Campbell, 1994, Hayward et al., 1996, Tebble, 1976, Newell & Hidu, 1986, Strasser, 1999, Brousseau & Baglivo, 1987, Brousseau, 1979, Stickney, 1964, Clay, 1966, Brousseau, 1987, Newell, 1982, Armonies, 1994, Brousseau, 1978(b), Kühl, 1981, Gibbons & Blogoslawski, 1989, Anonymous, 1996, Hawkins, 1994, Kammermans, 1994, Dow & Wallace, 1961, Beukema, 1995, McLaughlin & Faisal, 2000, Hayward & Ryland, 1990, |