Saccharina latissima with Psammechinus miliaris and/or Modiolus modiolus on variable salinity infralittoral sediment

Summary

UK and Ireland classification

Description

Shallow kelp community found on stoney mixed sediment, in full or variable salinity, in sheltered or moderately exposed conditions, with weak or very weak tidal currents. The community is characterized by a dense covering of Saccharina latissima. Beneath the kelp canopy, frequent Psammechinus miliaris may be found grazing the algal turf and scattered Modiolus modiolus are characteristic of this biotope. Encrusting the suface of stones and pebbles are Spirobranchus triqueter and in the sediment between the stones, the burrowing anemone Cerianthus lloydii may also be present. Small patches of Lithothamnion glaciale may be found in this biotope, although these patches do not form distict beds as in SBR.Lgla. In addition, a more ubiquitous fauna such as Asterias rubens and Pagurus bernhardus are also present. This biotope is generally found in sealochs.

Depth range

0-5 m, 5-10 m

Additional information

-

Listed By

Sensitivity reviewHow is sensitivity assessed?

Sensitivity characteristics of the habitat and relevant characteristic species

SS.SMp.KSwSS.SlatMxVS typically occurs on a mixture of shallow sediments and rock fractions in both full and variable salinity, in sheltered or moderately exposed conditions, in predominantly weak-very weak tidal streams (<0.5 m/s). This biotope generally occurs in sealochs in Scotland. The biotope is characterized by a dense Saccharina latissima canopy, frequent Psammechinus miliaris grazing on an algal turf and sparse Modiolus modiolus. Loss of any or all of these characteristic species would result in a major change in the character of, or loss of, the biotope.

In undertaking this assessment of sensitivity, account is taken of knowledge of the biology of all characterizing species in the biotope. For this sensitivity assessment Saccharina latissimaPsammechinus miliaris and Modiolus modiolus are the primary foci of research, however it is recognized that the understorey algal turf are also an important feature of the biotope. Examples of important species groups are mentioned where appropriate.

Resilience and recovery rates of habitat

Saccharina lattisima is a perennial kelp characteristic of wave sheltered sites of the North East Atlantic, distributed from northern Portugal to Spitzbergen, Svalbard (Birkett et al., 1998; Conor et al., 2004; Bekby & Moy, 2011; Moy & Christie, 2012). Saccharina lattisima is capable of reaching maturity within 15-20 months (Sjøtun, 1993) and has a life expectancy of 2-4 years (Parke, 1948). Maximum growth has been recorded in late winter early spring, in late summer and autumn growth rates slow (Parke, 1948; Lüning, 1979; Birkett et al., 1998). The overall length of the sporophyte may not change during the growth season due to marginal (distal) erosion of the blade, but extension growth of the blade has been measured at 1.1 cm/day, with total length addition of over 2.25 m of tissue per year (Birkett et al., 1998). Saccharina latissima has a heteromorphic life strategy. Vast numbers of zoospores are released from sori located centrally on the blade between autumn and winter. Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979) which, following fertilization, germinate into juvenile sporophytes from winter-spring. Kelp zoospores are expected to have a large dispersal range, however, zoospore density and the rate of successful fertilization decreases exponentially with distance from the parental source (Fredriksen et al., 1995). Hence, recruitment following disturbance can be influenced by the proximity of mature kelp beds producing viable zoospores to the disturbed area (Kain, 1979; Fredriksen et al., 1995).

In 2002 a 50.7-83% decline of Saccharina latissima was discovered in the Skaggerak region, South Norway (Moy et al., 2006; Moy & Christie, 2012). Survey results indicated a sustained shift from Saccharina latissima communities to those of ephemeral filamentous algal communities. The reason for the community shift was unknown, low water movement in wave and tidally sheltered areas combined with the impacts of dense human populations, e.g. increased land run-off, was suggested to be responsible for the dominance of ephemeral turf macro-algae. Multiple stressors such as eutrophication, increasing regional temperature, increased siltation and overfishing may also be acting synergistically to cause the observed habitat shift.

A large pressure for Laminaria hyperborea biotopes (e.g. IR.HIR.KFaR.LhypR) is urchin grazing pressure, particularly from the species Echinus esculentus, Paracentrotus lividus and Strongylocentrotus droebachiensis. Multiple authors (Steneck et al., 2002; Steneck et al., 2004; Rinde & Sjøtun, 2005; Norderhaug & Christie, 2009; Smale et al., 2013) have reported dense aggregations of sea urchins to be a principal threat to Laminaria hyperborea biotopes of the North Atlantic. Intense urchin grazing creates expansive areas known as “urchin barrens”, in which a shift can occur from Laminaria hyperborea dominated biotopes to those characterized by coralline encrusting algae, with a resultant reduction in biodiversity (Leinaas & Christie, 1996; Steneck et al., 2002, Norderhaug & Christie, 2009). Continued intensive urchin grazing pressure on Laminaria hyperborea biotopes can inhibit the Laminaria hyperborea recruitment (Sjøtun et al., 2006) and cause urchin barrens to persist for decades (Cristie et al., 1998; Stenneck et al., 2004; Rinde & Sjøtun, 2005). A kelp recolinization experiment conducted by Leinaas & Christie (1996) removed Strongylocentrotus droebachiensis from “urchin barrens” and observed a succession effect. Within the experiment it was observed that the substratum was initially colonized by filamentous macroalgae and within 2 weeks Saccharina latissima colonized and persisted for 2 years. However after 2-4 years Laminaria hyperborea dominated the community. Despite Laminaria hyperborea’s eventual dominance within the community Leinaas & Christie (1996) demonstrated that Saccharina latissima can colinse cleared areas rapidly.

Psammechinus miliaris is a sea urchin distributed across the north east Atlantic from Morocco to northern Scandinavia (Mortensen, 1927). In the British Isles it can occur in dense aggregation within sheltered locations e.g. Scottish sea lochs, and its distribution frequently coincides with that of Saccharina latissima (Kelly, 2000). Psammechinus miliaris grazes on a wide array of algae and encrusting organisms, including live Saccharina latissima (as in IR.LIR.KVS.SlatPsaVS) (Kelly, 2000; Connor et al., 2004). Psammechinus miliaris can reach sexual maturity within the first year, reproduce each successive year (Elmhirst, 1922) and are reported to live up 10 years (Allain, 1978). Gametogenesis begins in May and spawning usually occurs between June and August. Depending on food availability, planktonic larvae will then typically settle out within 20-21 days, 5-7 days after settlement the gut will fully developed and juveniles will begin grazing (Kelly, 2001).

Modiolus modiolus is a large bivalve with a wide UK distribution (NBN gateway, 2015). Modiolus modiolus is adapted to live semi-infaunally with an endobyssate attachment to the substratum but may also be found attached to hard substratum, epifaunally in a manner similar to the common mussel Mytilus edulis. Modiolus modiolus can form expansive beds which vary in size, density, thickness and form. However within SS.SMp.KSwSS.SlatMxVS only sparse individuals are present. Individuals over 25 years old are frequent in British populations, with occasional records of individuals of up to 35 years old. The maximum life expectancy is thought to be in excess of 50 years (Anwar et al., 1990). The spawning season is variable or unclear and varies with depth and geographic location, probably related to temperature (de Schwienitz & Lutz, 1976; reviewed by Brown, 1984; Holt et al., 1998). For example: in Strangford Lough, Ireland the population exhibits a slow, continuous release of gametes (Seed & Brown, 1977; Brown & Seed, 1977); populations off south east of the Isle of Man show an annual gametogenesis and spawning cycle, with continuous release of gametes and a peak in spring and summer (Jasim & Brand; 1989); Scottish populations showed a slow release of gametes throughout the year with peaks of spawning in spring and summer in some areas (Comely, 1978); Swedish and northern Norwegian populations showed a distinct spawning in June-July respectively (Brown, 1984), and Wiborg (1946) reported that spawning occurring only every 2nd to 3rd year in Norwegian waters. Brown (1984) suggested that Modiolus modiolus commenced spawning over a narrow range of temperatures (7 -10°C), timed with suitable conditions for larval development. Brown (1984) also suggested that the suitable spawning temperature may limit this species' northern distribution.

Recruitment in Modiolus modiolus is sporadic and highly variable seasonally, annually or with location (geographic and depth) (Holt et al 1998). Some areas may have received little or no recruitment for several years. Even in areas of regular recruitment, such as enclosed areas, recruitment is low in comparison with other mytilids such as Mytilus edulis. For instance, in Strangford Lough, small horse mussels (<10mm) represented <10% of the population, with peaks of 20-30% in good years (Brown & Seed 1977). In open areas with free water movement larvae are probably swept away from the adult population, and such populations are probably not self-recruiting but dependant on recruitment from other areas, which is in turn dependant on the local hydrographic regime. In addition, surviving recruits take several to many years to reach maturity (3-8 years) (Holt et al 1998). However, colonization on new structures such as the legs of oil rigs can occur within a few years (K. Hiscock pers. comm., cited from Holt et al 1998).

Modiolus modiolus recruitment is sporadic and highly variable seasonally, annually or with location (geographic and depth) (Holt et al 1998). Some areas may have received little or no recruitment for several years. Even in areas of regular recruitment, such as enclosed areas, recruitment is low in comparison with other mytilids such as Mytilus edulis. In open coast areas, e.g. the Llyn Peninsula and Sarnau, released larvae are probably swept away from the adult population (Comely, 1978; Holt et al., 1998). Holt et al. (1998) cite unpublished preliminary genetic data that suggest that beds off the south east of the Isle of Man receive recruits from other areas, albeit in a sporadic manner. Holt et al. (1998) suggested that enclosed areas such as Strangford Lough and the Scottish sea lochs would be relatively self sustaining. For instance, in Strangford Lough, small horse mussels (<10mm) represented <10% of the population, with peaks of 20-30% in good years (Brown & Seed 1977). In open areas with free water movement larvae are probably swept away from the adult population, and such populations are probably not self-recruiting but dependant on recruitment from other areas, which is in turn dependant on the local hydrographic regime. In addition, surviving recruits take several to many years to reach maturity (3-8 years) (Holt et al 1998). However, colonization on new structures such as the legs of oil rigs can occur within a few years (K. Hiscock pers. comm., cited from Holt et al 1998; Tillin & Tyler-Walters, 2014).

Translocation of horse mussels Modiolus modiolus, to areas of ‘cultch’ (broken scallop shells) in Strangford Lough, Northern Ireland as part of a programme of work to restore populations destroyed by scallop dredging, indicated that settlement of Modiolus modiolus larvae was directly enhanced by the presence of adults on the sea floor (Davoult et al., 1990). Translocation seemed essential and, as a part of the same study, Elsäßer et al. (2013) concluded that remnant populations of Modiolus modiolus are largely self-recruiting with little connectivity between them and with populations outside the lough. They suggested that the best approach to accelerate the recovery and restoration of Modiolus modiolus biogenic reefs in Strangford Lough is to provide total protection of all remaining larval sources and establish additional patches of mussels in areas where models predicted certain larval densities to ensure that restoration sites are located where recovery has the highest likelihood of success (Tillin & Tyler-Walters, 2014).

Growth rates have been inferred from growth rings. Growth is rapid in the first 4-6 years, with energy being diverted to growth rather than reproduction. Rapid juvenile growth appears to be an adaptation to avoid predation. Once large size has been reached growth is very slow. Once individuals reach 45-60 mm in length they become relatively immune to predation as only the very largest crabs and starfish can open horse mussels over 50mm in length (Seed & Brown, 1978; Anwar et al., 1990; Holt et al., 1998). Sexual maturity occurs at about 35-40 mm according to Anwar et al. (1990) and coincides approximately with the size, at which individuals become less prone to predation and can divert resources to growth (Brown & Seed, 1977). Reported ages at maturation vary and include: 3-4 years of age in the Isle of Man (Jasim, 1986); 5-6 years in Norwegian waters (Wiborg, 1946); 7-8 years in Canadian populations (Rowell, 1967), and over 4 years of age in Strangford Lough (Seed & Brown, 1978).

Resilience assessment. Psammechinus miliaris can become sexually mature with its first year, although recruitment in echinoderms is sporadic or variable depending on locality. Saccharina latissima also has rapid recovery rates, recovering from Strongylocentrotus droebachiensis ‘urchin Barrens’ appearing after a few weeks, and can reach maturity within 15-20 months (Birkett et al., 1998). UK populations of Modiolus modiolus, populations demonstrate sporadic and highly variable recruitment, slow growth and can take 3-8 years to reach maturity. The resilience of Modiolus modiolus reefs is regarded as ‘Very low’ or ‘Low’ (10-25 years) (Tillin & Tyler-Walters, 2014). However, the abundance of Modiolus modiolus is only recorded as occasional in SS.SMp.KSwSS.SlatMxVS; an abundance that may require only limited recruitment to maintain or recover. Therefore, the resilience of the biotope has been assessed as ‘Medium’. For permanent or ongoing (long-term) pressures where recovery is not possible as the pressure is irreversible, resilience is assessed as ‘Very low’ by default. For widespread pressures, where resistance is assessed as ‘None’, resilience is assessed as ‘Very low’ due to the low dispersal potential of Saccharina latissima, which may prevent recruitment and recolonization after the pressure ceases. Please note some pressures may affect some of the characterizing species over others resilience scores may therefore vary throughout this review.

Climate Change Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Global warming (extreme) [Show more]

Global warming (extreme)

Extreme emission scenario (by the end of this century 2081-2100) benchmark of:

  • A 5°C rise in SST and NBT (coastal to the shelf seas),

  • A 6°C rise in surface air temperature (in eulittoral and supralittoral habitats).

  • A 1°C rise in Deep-sea habitats (>200 m) off the continental shelf, and

  • A 5°C rise in surface air temperature in intertidal habitats exclusive to Scotland. Further detail.

Evidence

The distribution of seaweeds is climatically defined (Breeman, 1990). Northern boundaries are set by winter temperatures that are lethal or summer temperatures too low for growth and/or reproduction, whilst southern limits are set by high lethal summer temperatures or winter temperatures too high for induction of a crucial step in the life cycle (Breeman, 1990). Saccharina latissima is a polar to temperate macroalgae distributed from Greenland to the coast of Portugal, and in the NW Atlantic, is found as far south as New York State, USA. In the UK, sea surface temperatures are between 6-19°C (Huthnance, 2010), and Saccharina latissima is in the middle of its biogeographic range. At its southern distribution in New York, temperatures can regularly reach ≥ 20°C for six weeks or more during summer months (Gerard & Du Bois, 1988).

Temperature is a major environmental factor controlling the development of the microscopic stages of Saccharina latissima, with major changes in survival, growth, and gametogenesis occurring within a few degrees of upper thermal limits (Redmond, 2013). The temperature isotherm of 19-20°C was reported as limiting Saccharina latissima growth (Müller et al., 2009). Germination rates drop at 22°C, with surviving gametophytes smaller than those grown at lower temperatures (Redmond, 2013), and the maximum temperature for gametophytes survival is 23°C. Bolton & Lüning (1982) report an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte, with growth reduced by 50-70% at 20°C, and all experimental specimens disintegrating after seven days at 23°C.

In the field, Saccharina latissima has shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima that were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations, which rarely experience ≥17°C, showed 100% mortality after three weeks of exposure to 20°C.

Saccharina latissima has suffered a dramatic decline in the Skagerrak region, Norway. In 2006, Andersen et al. (2011) transplanted Saccharina latissima into areas from where this species had been lost previously to determine whether the kelp could grow and mature. However, there was annual variation. High mortality occurred from August-November each year. In 2008, only six of the original 17 transplanted Saccharina latissima sporophytes survived (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration at which temperatures remain above 20°C. High sea temperatures have been linked to slow growth of Saccharina latissima which is likely due to a decrease in the photosynthetic ability of Saccharina latissima, and an increase in vulnerability to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). 

Assis et al. (2018) predicted that under the highest emission scenario (RCP 8.5), the range of Saccharina latissima would move northwards, retreating from the coast of Portugal, France and from the southwest coast of the UK. The authors projected that under RCP 2.6, 13% of suitable Laminaria hyperborea habitat would be lost from the Western English Channel, whilst under the RCP 8.5 emission, 87% of suitable habitat was expected to be lost.

Modiolus modiolus is a Boreal species that is distributed from the White Sea and Norway, off the Faroes and Iceland, south to the Bay of Biscay and occasionally North Africa. Also from Labrador to North Carolina in the Atlantic and from the Bering Sea south to Japan and California in the Pacific. Although this species is widespread, Modiolus modiolus beds are more limited in their distribution. In the UK, Modiolus modiolus is not known to form beds beyond the North Sea and the southern Irish Sea. The reproductive cycle of Modiolus modiolus varies considerably over its geographic range, with spawning appearing to commence over a reasonably small range of temperatures (7-10°C; Brown, 1984), which might explain the limited distribution of these beds. The depth range of Modiolus modiolus increases at higher latitudes with intertidal specimens more common on northern Norwegian shores where air temperatures are lower (Davenport & Kjørsvik, 1982).

Observations on Modiolus modiolus exposed to high temperatures suggest that this species is restricted by upper seawater temperatures of 23°C (Read & Cumming, 1967), although individuals may survive short-term exposure to higher temperatures. Read (1967) found that in intertidal pools most submerged Modiolus modiolus survived following exposure to temperatures that rose from 19 to 32.5°C over 5.5 hours. Modiolus barbatus, which has a more southerly distribution in the North East Atlantic and the Mediterranean, has been shown to experience metabolic depression and switch to anaerobic metabolism at temperatures exceeding 24°C, with some mortality (Anestis et al., 2008).

Psammechinus miliaris is distributed from the Shetland Islands to the Bay of Biscay, with some scattered observations further south (www.obis.org). This species generally occurs in water temperatures of 4 – 17°C. Kelly (2001) suggests that experiencing cold water over winter is important for the completion of gametogenesis in female Psammechinus miliaris, as significantly fewer females in the temperature-controlled treatment (with seawater maintained at 9°C) produced mature eggs.

Sensitivity Assessment. This biotope only occurs in Scotland, often in sealochs. UK populations of Saccharina latissima are found in the middle of their distribution and are known to be able to survive at higher temperatures than currently experienced around the UK. The ability to tolerate summer seawater temperatures of >20°C in populations at their southern geographic limit is thought to be a genetic adaptation (Gerard & Du Bois, 1988), and maybe crucial in the persistence of this species around the UK, as seawater temperatures rise.

Sea surface temperatures around Scotland range between 6-16°C (www.seatemperature.org). Under the middle and high emission scenarios sea temperatures are predicted to rise by between 3-4°C by the end of this century, leading to Scottish winter seawater temperatures of 9 - 10°C and summer highs of 19 - 20°C. Populations of Saccharina latissima may be able to adapt to cope with a gradual rise in ocean temperatures of this magnitude although Psammechinus miliaris and Modiolus modiolus may be negatively impacted. In particular, an increase in winter seawater temperatures is likely to reduce the window for reproduction in both species. Therefore, resistance is assessed as ‘Medium’, and resilience is assessed as ‘Very Low’, as the loss is likely to be a long-term decline, due to the long-term nature of ocean warming. Therefore, this biotope is assessed as ‘Medium’ sensitivity to ocean warming in middle and high emission scenario benchmark levels.

Under the extreme scenario, whereby sea temperatures rise by 5°C to potential southern summer temperatures of 20°C and winter low temperatures of 11°C (www.seatemperature.org), all three characterizing species for this biotope are likely to suffer negative impacts. Therefore, resistance is assessed as ‘Low’, and resilience is assessed as ‘Very low’. Therefore, this biotope is assessed as ‘High’ sensitivity to ocean warming under the extreme scenario.  

Low
Medium
Medium
Medium
Help
Very Low
High
High
High
Help
High
Medium
Medium
Medium
Help
Global warming (high) [Show more]

Global warming (high)

High emission scenario (by the end of this century 2081-2100) benchmark of:

  • A 4°C rise in SST, NBT (coastal to the shelf seas) and surface air temperature (in eulittoral and supralittoral habitats).

  • A 1°C rise in Deep-sea habitats (>200 m) off the continental shelf, and

  • A 3°C rise in surface air temperature in intertidal habitats exclusive to Scotland. Further detail.

Evidence

The distribution of seaweeds is climatically defined (Breeman, 1990). Northern boundaries are set by winter temperatures that are lethal or summer temperatures too low for growth and/or reproduction, whilst southern limits are set by high lethal summer temperatures or winter temperatures too high for induction of a crucial step in the life cycle (Breeman, 1990). Saccharina latissima is a polar to temperate macroalgae distributed from Greenland to the coast of Portugal, and in the NW Atlantic, is found as far south as New York State, USA. In the UK, sea surface temperatures are between 6-19°C (Huthnance, 2010), and Saccharina latissima is in the middle of its biogeographic range. At its southern distribution in New York, temperatures can regularly reach ≥ 20°C for six weeks or more during summer months (Gerard & Du Bois, 1988).

Temperature is a major environmental factor controlling the development of the microscopic stages of Saccharina latissima, with major changes in survival, growth, and gametogenesis occurring within a few degrees of upper thermal limits (Redmond, 2013). The temperature isotherm of 19-20°C was reported as limiting Saccharina latissima growth (Müller et al., 2009). Germination rates drop at 22°C, with surviving gametophytes smaller than those grown at lower temperatures (Redmond, 2013), and the maximum temperature for gametophytes survival is 23°C. Bolton & Lüning (1982) report an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte, with growth reduced by 50-70% at 20°C, and all experimental specimens disintegrating after seven days at 23°C.

In the field, Saccharina latissima has shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima that were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations, which rarely experience ≥17°C, showed 100% mortality after three weeks of exposure to 20°C.

Saccharina latissima has suffered a dramatic decline in the Skagerrak region, Norway. In 2006, Andersen et al. (2011) transplanted Saccharina latissima into areas from where this species had been lost previously to determine whether the kelp could grow and mature. However, there was annual variation. High mortality occurred from August-November each year. In 2008, only six of the original 17 transplanted Saccharina latissima sporophytes survived (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration at which temperatures remain above 20°C. High sea temperatures have been linked to slow growth of Saccharina latissima which is likely due to a decrease in the photosynthetic ability of Saccharina latissima, and an increase in vulnerability to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). 

Assis et al. (2018) predicted that under the highest emission scenario (RCP 8.5), the range of Saccharina latissima would move northwards, retreating from the coast of Portugal, France and from the southwest coast of the UK. The authors projected that under RCP 2.6, 13% of suitable Laminaria hyperborea habitat would be lost from the Western English Channel, whilst under the RCP 8.5 emission, 87% of suitable habitat was expected to be lost.

Modiolus modiolus is a Boreal species that is distributed from the White Sea and Norway, off the Faroes and Iceland, south to the Bay of Biscay and occasionally North Africa. Also from Labrador to North Carolina in the Atlantic and from the Bering Sea south to Japan and California in the Pacific. Although this species is widespread, Modiolus modiolus beds are more limited in their distribution. In the UK, Modiolus modiolus is not known to form beds beyond the North Sea and the southern Irish Sea. The reproductive cycle of Modiolus modiolus varies considerably over its geographic range, with spawning appearing to commence over a reasonably small range of temperatures (7-10°C; Brown, 1984), which might explain the limited distribution of these beds. The depth range of Modiolus modiolus increases at higher latitudes with intertidal specimens more common on northern Norwegian shores where air temperatures are lower (Davenport & Kjørsvik, 1982).

Observations on Modiolus modiolus exposed to high temperatures suggest that this species is restricted by upper seawater temperatures of 23°C (Read & Cumming, 1967), although individuals may survive short-term exposure to higher temperatures. Read (1967) found that in intertidal pools most submerged Modiolus modiolus survived following exposure to temperatures that rose from 19 to 32.5°C over 5.5 hours. Modiolus barbatus, which has a more southerly distribution in the North East Atlantic and the Mediterranean, has been shown to experience metabolic depression and switch to anaerobic metabolism at temperatures exceeding 24°C, with some mortality (Anestis et al., 2008).

Psammechinus miliaris is distributed from the Shetland Islands to the Bay of Biscay, with some scattered observations further south (www.obis.org). This species generally occurs in water temperatures of 4 – 17°C. Kelly (2001) suggests that experiencing cold water over winter is important for the completion of gametogenesis in female Psammechinus miliaris, as significantly fewer females in the temperature-controlled treatment (with seawater maintained at 9°C) produced mature eggs.

Sensitivity Assessment. This biotope only occurs in Scotland, often in sealochs. UK populations of Saccharina latissima are found in the middle of their distribution and are known to be able to survive at higher temperatures than currently experienced around the UK. The ability to tolerate summer seawater temperatures of >20°C in populations at their southern geographic limit is thought to be a genetic adaptation (Gerard & Du Bois, 1988), and maybe crucial in the persistence of this species around the UK, as seawater temperatures rise.

Sea surface temperatures around Scotland range between 6-16°C (www.seatemperature.org). Under the middle and high emission scenarios sea temperatures are predicted to rise by between 3-4°C by the end of this century, leading to Scottish winter seawater temperatures of 9 - 10°C and summer highs of 19 - 20°C. Populations of Saccharina latissima may be able to adapt to cope with a gradual rise in ocean temperatures of this magnitude although Psammechinus miliaris and Modiolus modiolus may be negatively impacted. In particular, an increase in winter seawater temperatures is likely to reduce the window for reproduction in both species. Therefore, resistance is assessed as ‘Medium’, and resilience is assessed as ‘Very Low’, as the loss is likely to be a long-term decline, due to the long-term nature of ocean warming. Therefore, this biotope is assessed as ‘Medium’ sensitivity to ocean warming in middle and high emission scenario benchmark levels.

Under the extreme scenario, whereby sea temperatures rise by 5°C to potential southern summer temperatures of 20°C and winter low temperatures of 11°C (www.seatemperature.org), all three characterizing species for this biotope are likely to suffer negative impacts. Therefore, resistance is assessed as ‘Low’, and resilience is assessed as ‘Very low’. Therefore, this biotope is assessed as ‘High’ sensitivity to ocean warming under the extreme scenario.  

Medium
Medium
Medium
Medium
Help
Very Low
High
High
High
Help
Medium
Medium
Medium
Medium
Help
Global warming (middle) [Show more]

Global warming (middle)

Middle emission scenario (by the end of this century 2081-2100) benchmark of:

  • A 3°C rise in SST, NBT (coastal to the shelf seas) and surface air temperature (in eulittoral and supralittoral habitats).

  • A 1°C rise in Deep-sea habitats (>200 m) off the continental shelf.

  • A 2°C rise in surface air temperature in intertidal habitats exclusive to Scotland. Further detail.

Evidence

The distribution of seaweeds is climatically defined (Breeman, 1990). Northern boundaries are set by winter temperatures that are lethal or summer temperatures too low for growth and/or reproduction, whilst southern limits are set by high lethal summer temperatures or winter temperatures too high for induction of a crucial step in the life cycle (Breeman, 1990). Saccharina latissima is a polar to temperate macroalgae distributed from Greenland to the coast of Portugal, and in the NW Atlantic, is found as far south as New York State, USA. In the UK, sea surface temperatures are between 6-19°C (Huthnance, 2010), and Saccharina latissima is in the middle of its biogeographic range. At its southern distribution in New York, temperatures can regularly reach ≥ 20°C for six weeks or more during summer months (Gerard & Du Bois, 1988).

Temperature is a major environmental factor controlling the development of the microscopic stages of Saccharina latissima, with major changes in survival, growth, and gametogenesis occurring within a few degrees of upper thermal limits (Redmond, 2013). The temperature isotherm of 19-20°C was reported as limiting Saccharina latissima growth (Müller et al., 2009). Germination rates drop at 22°C, with surviving gametophytes smaller than those grown at lower temperatures (Redmond, 2013), and the maximum temperature for gametophytes survival is 23°C. Bolton & Lüning (1982) report an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte, with growth reduced by 50-70% at 20°C, and all experimental specimens disintegrating after seven days at 23°C.

In the field, Saccharina latissima has shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima that were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations, which rarely experience ≥17°C, showed 100% mortality after three weeks of exposure to 20°C.

Saccharina latissima has suffered a dramatic decline in the Skagerrak region, Norway. In 2006, Andersen et al. (2011) transplanted Saccharina latissima into areas from where this species had been lost previously to determine whether the kelp could grow and mature. However, there was annual variation. High mortality occurred from August-November each year. In 2008, only six of the original 17 transplanted Saccharina latissima sporophytes survived (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration at which temperatures remain above 20°C. High sea temperatures have been linked to slow growth of Saccharina latissima which is likely due to a decrease in the photosynthetic ability of Saccharina latissima, and an increase in vulnerability to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). 

Assis et al. (2018) predicted that under the highest emission scenario (RCP 8.5), the range of Saccharina latissima would move northwards, retreating from the coast of Portugal, France and from the southwest coast of the UK. The authors projected that under RCP 2.6, 13% of suitable Laminaria hyperborea habitat would be lost from the Western English Channel, whilst under the RCP 8.5 emission, 87% of suitable habitat was expected to be lost.

Modiolus modiolus is a Boreal species that is distributed from the White Sea and Norway, off the Faroes and Iceland, south to the Bay of Biscay and occasionally North Africa. Also from Labrador to North Carolina in the Atlantic and from the Bering Sea south to Japan and California in the Pacific. Although this species is widespread, Modiolus modiolus beds are more limited in their distribution. In the UK, Modiolus modiolus is not known to form beds beyond the North Sea and the southern Irish Sea. The reproductive cycle of Modiolus modiolus varies considerably over its geographic range, with spawning appearing to commence over a reasonably small range of temperatures (7-10°C; Brown, 1984), which might explain the limited distribution of these beds. The depth range of Modiolus modiolus increases at higher latitudes with intertidal specimens more common on northern Norwegian shores where air temperatures are lower (Davenport & Kjørsvik, 1982).

Observations on Modiolus modiolus exposed to high temperatures suggest that this species is restricted by upper seawater temperatures of 23°C (Read & Cumming, 1967), although individuals may survive short-term exposure to higher temperatures. Read (1967) found that in intertidal pools most submerged Modiolus modiolus survived following exposure to temperatures that rose from 19 to 32.5°C over 5.5 hours. Modiolus barbatus, which has a more southerly distribution in the North East Atlantic and the Mediterranean, has been shown to experience metabolic depression and switch to anaerobic metabolism at temperatures exceeding 24°C, with some mortality (Anestis et al., 2008).

Psammechinus miliaris is distributed from the Shetland Islands to the Bay of Biscay, with some scattered observations further south (www.obis.org). This species generally occurs in water temperatures of 4 – 17°C. Kelly (2001) suggests that experiencing cold water over winter is important for the completion of gametogenesis in female Psammechinus miliaris, as significantly fewer females in the temperature-controlled treatment (with seawater maintained at 9°C) produced mature eggs.

Sensitivity Assessment. This biotope only occurs in Scotland, often in sealochs. UK populations of Saccharina latissima are found in the middle of their distribution and are known to be able to survive at higher temperatures than currently experienced around the UK. The ability to tolerate summer seawater temperatures of >20°C in populations at their southern geographic limit is thought to be a genetic adaptation (Gerard & Du Bois, 1988), and maybe crucial in the persistence of this species around the UK, as seawater temperatures rise.

Sea surface temperatures around Scotland range between 6-16°C (www.seatemperature.org). Under the middle and high emission scenarios sea temperatures are predicted to rise by between 3-4°C by the end of this century, leading to Scottish winter seawater temperatures of 9 - 10°C and summer highs of 19 - 20°C. Populations of Saccharina latissima may be able to adapt to cope with a gradual rise in ocean temperatures of this magnitude although Psammechinus miliaris and Modiolus modiolus may be negatively impacted. In particular, an increase in winter seawater temperatures is likely to reduce the window for reproduction in both species. Therefore, resistance is assessed as ‘Medium’, and resilience is assessed as ‘Very Low’, as the loss is likely to be a long-term decline, due to the long-term nature of ocean warming. Therefore, this biotope is assessed as ‘Medium’ sensitivity to ocean warming in middle and high emission scenario benchmark levels.

Under the extreme scenario, whereby sea temperatures rise by 5°C to potential southern summer temperatures of 20°C and winter low temperatures of 11°C (www.seatemperature.org), all three characterizing species for this biotope are likely to suffer negative impacts. Therefore, resistance is assessed as ‘Low’, and resilience is assessed as ‘Very low’. Therefore, this biotope is assessed as ‘High’ sensitivity to ocean warming under the extreme scenario.  

Medium
Medium
Medium
Medium
Help
Very Low
High
High
High
Help
Medium
Medium
Medium
Medium
Help
Marine heatwaves (high) [Show more]

Marine heatwaves (high)

High emission scenario benchmark: A marine heatwave occurring every two years, with a mean duration of 120 days, and a maximum intensity of 3.5°C. Further detail.

Evidence

Marine heatwaves due to increased air-sea heat flux are predicted to occur more frequently, last for longer and at increased intensity by the end of this century under both middle and high emission scenarios (Frölicher et al., 2018). Saccharina latissima has disappeared almost completely from the Danish estuary Limfjorden, where maximum surface temperatures in summer have increased by 0.7°C per decade over the last 40 years while the number of days with temperatures above 20°C has increased dramatically from 1-2 days year to >25 days year (Pedersen, 2015). Similarly, Saccharina latissima has been lost from the Skagerrak coast of Norway, which is thought to be due to an increase in summer temperatures, coupled with eutrophication (Moy & Christie, 2012).

Under experimental conditions, Nepper-Davidson et al. (2019) exposed a northern (Denmark) population of Saccharina latissima to a simulated three-week heatwave of three different intensities; 18, 21 and 24°C. When exposed to heatwaves of 18 and 21°C there was a decrease in photosynthesis and growth. When a 24°C was simulated, 91% of sporophytes were dead within a week, and the fronds of the few survivors were disintegrating, and the experiment was terminated (Nepper-Davidsen et al., 2019). These results suggest that this species is unlikely to survive heatwaves of the length and magnitude predicted by the end of this century for both the middle and high emission scenarios.

Modiolus modiolus is a Boreal species, which is thought to have an upper thermal limit of 23°C (Read & Cumming, 1967), although individuals are known to be able to survive short-term exposure to higher temperatures. For example, in intertidal pools, the majority of submerged Modiolus modiolus survived following exposure to temperatures that rose from 19 to 32.5°C over the course of 5.5 hours. Reproduction occurs in this species across a relatively small window (7-10°C; Brown, 1984), and if marine heatwaves occur in winter, this could lead to inhibition of reproduction that has already been limited by ocean warming.

Both Psammechinus miliaris and Modiolus modiolus occur in intertidal rockpools, where temperature can be > 10°C warmer than seawater during summer, with large diurnal and seasonal fluctuations (Daniel & Boyden, 1975), suggesting these species have some temperature tolerance.

Sensitivity Assessment. Under the middle emission scenario, if heatwaves occurred every three years, with a maximum intensity of 2°C for 80 days by the end of this century, this could lead to summer sea temperatures reaching up to 21°C in Scotland. These temperatures may limit Saccharina latissima growth, although is unlikely to cause mortality. If a heatwave occurred in winter, this could lead to winter temperatures rising to 11°C, which could potentially lead to suppression of sexual reproduction in Psammechinus miliaris and Modiolus modiolus during the heatwave, although this is not expected to have large population-level effects, and Modiolus modiolus is known to spawn throughout most of the year in Ireland (Read & Cumming, 1967). Under the middle emission scenario, resistance is assessed as ‘High’ and resilience is assessed as ‘High’, as no recovery is deemed necessary. Therefore, this biotope has been assessed as having ‘Medium’ sensitivity to the middle emission scenario.

Under the high emission scenario, if heatwaves occur every two years by the end of this century, reaching a maximum intensity of 3.5°C for 120 days, this could lead to the heatwave lasting the entire summer with temperatures reaching up to 23°C in the summer in Scotland or 13°C in the winter. Under this scenario, if a heatwave occurs in the summer, it is likely to cause widespread mortality of Saccharina latissima. Therefore, resistance has been assessed as ‘None’. As widespread mortality may lead to a lack of viable sporophytes for recruitment, resilience has been assessed as ‘Very low.’ Therefore, this biotope is assessed as having ‘High’ sensitivity to marine heatwaves under the high emission scenario.

None
Medium
Medium
Medium
Help
Very Low
High
High
High
Help
High
Medium
Medium
Medium
Help
Marine heatwaves (middle) [Show more]

Marine heatwaves (middle)

Middle emission scenario benchmark:  A marine heatwave occurring every three years, with a mean duration of 80 days, with a maximum intensity of 2°C. Further detail.

Evidence

Marine heatwaves due to increased air-sea heat flux are predicted to occur more frequently, last for longer and at increased intensity by the end of this century under both middle and high emission scenarios (Frölicher et al., 2018). Saccharina latissima has disappeared almost completely from the Danish estuary Limfjorden, where maximum surface temperatures in summer have increased by 0.7°C per decade over the last 40 years while the number of days with temperatures above 20°C has increased dramatically from 1-2 days year to >25 days year (Pedersen, 2015). Similarly, Saccharina latissima has been lost from the Skagerrak coast of Norway, which is thought to be due to an increase in summer temperatures, coupled with eutrophication (Moy & Christie, 2012).

Under experimental conditions, Nepper-Davidson et al. (2019) exposed a northern (Denmark) population of Saccharina latissima to a simulated three-week heatwave of three different intensities; 18, 21 and 24°C. When exposed to heatwaves of 18 and 21°C there was a decrease in photosynthesis and growth. When a 24°C was simulated, 91% of sporophytes were dead within a week, and the fronds of the few survivors were disintegrating, and the experiment was terminated (Nepper-Davidsen et al., 2019). These results suggest that this species is unlikely to survive heatwaves of the length and magnitude predicted by the end of this century for both the middle and high emission scenarios.

Modiolus modiolus is a Boreal species, which is thought to have an upper thermal limit of 23°C (Read & Cumming, 1967), although individuals are known to be able to survive short-term exposure to higher temperatures. For example, in intertidal pools, the majority of submerged Modiolus modiolus survived following exposure to temperatures that rose from 19 to 32.5°C over the course of 5.5 hours. Reproduction occurs in this species across a relatively small window (7-10°C; Brown, 1984), and if marine heatwaves occur in winter, this could lead to inhibition of reproduction that has already been limited by ocean warming.

Both Psammechinus miliaris and Modiolus modiolus occur in intertidal rockpools, where temperature can be > 10°C warmer than seawater during summer, with large diurnal and seasonal fluctuations (Daniel & Boyden, 1975), suggesting these species have some temperature tolerance.

Sensitivity Assessment. Under the middle emission scenario, if heatwaves occurred every three years, with a maximum intensity of 2°C for 80 days by the end of this century, this could lead to summer sea temperatures reaching up to 21°C in Scotland. These temperatures may limit Saccharina latissima growth, although is unlikely to cause mortality. If a heatwave occurred in winter, this could lead to winter temperatures rising to 11°C, which could potentially lead to suppression of sexual reproduction in Psammechinus miliaris and Modiolus modiolus during the heatwave, although this is not expected to have large population-level effects, and Modiolus modiolus is known to spawn throughout most of the year in Ireland (Read & Cumming, 1967). Under the middle emission scenario, resistance is assessed as ‘High’ and resilience is assessed as ‘High’, as no recovery is deemed necessary. Therefore, this biotope has been assessed as having ‘Medium’ sensitivity to the middle emission scenario.

Under the high emission scenario, if heatwaves occur every two years by the end of this century, reaching a maximum intensity of 3.5°C for 120 days, this could lead to the heatwave lasting the entire summer with temperatures reaching up to 23°C in the summer in Scotland or 13°C in the winter. Under this scenario, if a heatwave occurs in the summer, it is likely to cause widespread mortality of Saccharina latissima. Therefore, resistance has been assessed as ‘None’. As widespread mortality may lead to a lack of viable sporophytes for recruitment, resilience has been assessed as ‘Very low.’ Therefore, this biotope is assessed as having ‘High’ sensitivity to marine heatwaves under the high emission scenario.

Medium
Medium
Medium
Medium
Help
Very Low
High
High
High
Help
Medium
Medium
Medium
Medium
Help
Ocean acidification (high) [Show more]

Ocean acidification (high)

High emission scenario benchmark: a further decrease in pH of 0.35 (annual mean) and corresponding 120% increase in H+ ions , seasonal aragonite saturation of 20% of UK coastal waters and North Sea bottom waters, and the aragonite saturation horizon in the NE Atlantic, off the continental shelf, occurring at a depth of 400 m by the end of this century 2081-2100. Further detail 

Evidence

Increasing levels of CO2 in the atmosphere have led to the average pH of sea surface waters dropping from 8.25 in the 1700s to 8.14 in the 1990s (Jacobson, 2005), with it expected to drop by a further 0.35 units by the end of this century, dependent on emission scenario.  Marine autotrophs will generally benefit from ocean acidification, through an increase in the availability of aqueous CO2 for photosynthesis (Koch et al., 2013). Most species of kelp appear to be undersaturated in respect to carbon dioxide, although they can generally utilise HCO3 and have external carbonic anhydrase for extracellular dehydration of HCO3 to CO2 (Koch et al., 2013).

Under experimental CO2 enrichment led at levels expected by the end of this century germination rates in Saccharina latissima were the same as control samples but gametophyte size increased, suggesting a benefit to juvenile stages of this species (Roleda et al., 2012). Nunes et al. (2015) found that experimental exposure of adult Saccharina latissima to enhanced CO2 led to an increase in net primary production, whilst Gordillo et al. (2015) found that enhanced CO2 led to increased photosynthesis and growth. In contrast, Iñiguez et al. (2016) found no increase in carbon fixation under elevated CO2 conditions. Whilst contrasting in findings, these studies show that ocean acidification is unlikely to negatively impact Saccharina latissima.

Dupont et al. (2010) analysed the literature and found that echinoderms are generally robust to ocean acidification, although different life stages and species are affected differently. Miles et al. (2007) suggested that Psammechinus miliaris would be sensitive to a pH drop of 0.5 units, as specimens were unable to regulate internal pH when exposed to a short-term (8 days) experimental decrease in pH, plus there was evidence of dissolution of the skeleton. These impacts were much more pronounced at lower pH (< 7). Suckling et al. (2014) found that when Psammechinus miliaris larvae were raised from parents pre-exposed to low pH conditions (pH 7.7 compared to control pH of 7.98), settlements rates were similar to control larvae, and test diameter was larger, which suggested that this species can acclimate and possibly adapt to low pH conditions.

There is no empirical evidence on the impact of ocean acidification on the horse mussel Modiolus modiolus. Bivalves generally appear quite tolerant to decreases in pH, and are abundant at acidified CO2 vents (Garrard et al., 2014, Kroeker et al., 2011), although it may be the larval stages which are most susceptible to ocean acidification (Kurihara, 2008). Under experimental conditions, it was found that normal shell development and growth of the D-veliger larvae of Mytilus galloprovincialis and Crassostrea gigas were related to aragonite saturation state rather than pH, with larvae growing well at a pH of 7.6 when aragonite saturation state was high, but decreasing as aragonite saturation fell below 2, regardless of pH (Waldbusser et al., 2015). Both Psammechinus miliaris and Modiolus modiolus occur in intertidal rockpools, where pH can vary by 3 units throughout the year, with large diurnal and seasonal variation (Morris & Taylor, 1983), which suggests some tolerance to changes in pH.

Sensitivity assessment. Under the middle emission scenario, a pH decrease of 1.5 units is expected to occur by the end of this century. Neither Saccharina latissima, Psammechinus miliaris nor Modiolus modiolus are expected to suffer significant negative impacts. Therefore, resistance to ocean acidification under the middle emission scenario has been assessed as ‘High’, whilst resilience is assessed as ‘High’, and this biotope is assessed as ‘Not sensitive’ to ocean acidification at this benchmark level. Under the high emission scenario, 20% of coastal areas are predicted to suffer from seasonal aragonite undersaturation (Ostle et al., 2016). Aragonite undersaturation will primarily occur in Scotland, where this biotope primarily occurs. It is expected that under this scenario, some negative impacts may be experienced by Psammechinus miliaris or Modiolus modiolus, therefore some loss is likely to occur. Therefore, resistance has been assessed as ‘Medium’, whilst resilience is assessed as ‘Very Low’ due to the long term nature of ocean acidification. Under the high emission scenario, sensitivity to ocean acidification is assessed as ‘Medium’.

Medium
Medium
Medium
Medium
Help
Very Low
High
High
High
Help
Medium
Medium
Medium
Medium
Help
Ocean acidification (middle) [Show more]

Ocean acidification (middle)

Middle emission scenario benchmark: a further decrease in pH of 0.15 (annual mean) and corresponding 35% increase in H+ ions with no coastal aragonite undersaturation and the aragonite saturation horizon in the NE Atlantic, off the continental shelf, at a depth of 800 m by the end of this century 2081-2100. Further detail.

Evidence

Increasing levels of CO2 in the atmosphere have led to the average pH of sea surface waters dropping from 8.25 in the 1700s to 8.14 in the 1990s (Jacobson, 2005), with it expected to drop by a further 0.35 units by the end of this century, dependent on emission scenario.  Marine autotrophs will generally benefit from ocean acidification, through an increase in the availability of aqueous CO2 for photosynthesis (Koch et al., 2013). Most species of kelp appear to be undersaturated in respect to carbon dioxide, although they can generally utilise HCO3 and have external carbonic anhydrase for extracellular dehydration of HCO3 to CO2 (Koch et al., 2013).

Under experimental CO2 enrichment led at levels expected by the end of this century germination rates in Saccharina latissima were the same as control samples but gametophyte size increased, suggesting a benefit to juvenile stages of this species (Roleda et al., 2012). Nunes et al. (2015) found that experimental exposure of adult Saccharina latissima to enhanced CO2 led to an increase in net primary production, whilst Gordillo et al. (2015) found that enhanced CO2 led to increased photosynthesis and growth. In contrast, Iñiguez et al. (2016) found no increase in carbon fixation under elevated CO2 conditions. Whilst contrasting in findings, these studies show that ocean acidification is unlikely to negatively impact Saccharina latissima.

Dupont et al. (2010) analysed the literature and found that echinoderms are generally robust to ocean acidification, although different life stages and species are affected differently. Miles et al. (2007) suggested that Psammechinus miliaris would be sensitive to a pH drop of 0.5 units, as specimens were unable to regulate internal pH when exposed to a short-term (8 days) experimental decrease in pH, plus there was evidence of dissolution of the skeleton. These impacts were much more pronounced at lower pH (< 7). Suckling et al. (2014) found that when Psammechinus miliaris larvae were raised from parents pre-exposed to low pH conditions (pH 7.7 compared to control pH of 7.98), settlements rates were similar to control larvae, and test diameter was larger, which suggested that this species can acclimate and possibly adapt to low pH conditions.

There is no empirical evidence on the impact of ocean acidification on the horse mussel Modiolus modiolus. Bivalves generally appear quite tolerant to decreases in pH, and are abundant at acidified CO2 vents (Garrard et al., 2014, Kroeker et al., 2011), although it may be the larval stages which are most susceptible to ocean acidification (Kurihara, 2008). Under experimental conditions, it was found that normal shell development and growth of the D-veliger larvae of Mytilus galloprovincialis and Crassostrea gigas were related to aragonite saturation state rather than pH, with larvae growing well at a pH of 7.6 when aragonite saturation state was high, but decreasing as aragonite saturation fell below 2, regardless of pH (Waldbusser et al., 2015). Both Psammechinus miliaris and Modiolus modiolus occur in intertidal rockpools, where pH can vary by 3 units throughout the year, with large diurnal and seasonal variation (Morris & Taylor, 1983), which suggests some tolerance to changes in pH.

Sensitivity assessment. Under the middle emission scenario, a pH decrease of 1.5 units is expected to occur by the end of this century. Neither Saccharina latissima, Psammechinus miliaris nor Modiolus modiolus are expected to suffer significant negative impacts. Therefore, resistance to ocean acidification under the middle emission scenario has been assessed as ‘High’, whilst resilience is assessed as ‘High’, and this biotope is assessed as ‘Not sensitive’ to ocean acidification at this benchmark level. Under the high emission scenario, 20% of coastal areas are predicted to suffer from seasonal aragonite undersaturation (Ostle et al., 2016). Aragonite undersaturation will primarily occur in Scotland, where this biotope primarily occurs. It is expected that under this scenario, some negative impacts may be experienced by Psammechinus miliaris or Modiolus modiolus, therefore some loss is likely to occur. Therefore, resistance has been assessed as ‘Medium’, whilst resilience is assessed as ‘Very Low’ due to the long term nature of ocean acidification. Under the high emission scenario, sensitivity to ocean acidification is assessed as ‘Medium’.

High
Medium
Medium
Medium
Help
High
High
High
High
Help
Not sensitive
Medium
Medium
Medium
Help
Sea level rise (extreme) [Show more]

Sea level rise (extreme)

Extreme scenario benchmark: a 107 cm rise in average UK by the end of this century (2018-2100). Further detail.

Evidence

Sea-level rise is occurring through a combination of thermal expansion and ice melt.  Sea levels have risen 1-3 mm/yr. in the last century (Cazenave & Nerem, 2004, Church et al., 2004, Church & White, 2006). This biotope occurs on stony mixed sediment, at 0 – 10 m depth, in full or variable salinity, in sheltered or moderately exposed conditions, with weak or very weak tidal currents (JNCC, 2015), and is common in sea lochs in Scotland.

Understanding how sea-level rise will affect exposure or tidal energy, is fraught with uncertainty, although evidence appears to suggest that any alterations will be non-linear (Pickering et al., 2012, Li et al., 2016). Modelling potential outcomes of sea-level rise on the tidal and residual currents in the Bohai Sea, China showed effects were site-dependent, with energy either increasing or decreasing (Li et al., 2016). Similarly, Pickering et al. (2012) found a similar pattern around the UK for tidal amplitude. The effects of sea-level rise and increased wave action may be increased further due to storms and storm surges.  IPCC (2019) note that the frequency of extreme sea-level events (e.g. due to storms) are predicted to increase as sea-level rises, however, there is no consensus on the future storm and, hence, wave climate around UK coasts (Mossman et al., 2015; Lowe et al., 2018; Palmer et al., 2018).

Sensitivity assessment. It is difficult to assess the effect of sea-level rise scenarios on exposure or tidal energy, as evidence predicts that any changes will be site-specific. This biotope occurs from the sublittoral fringe down to 10 m, although all three characteristic species (Saccharina latissima, Psammechinus miliaris and Modiolus modiolus) are known to have a more extensive depth range, and as long as tidal currents or exposure did not become unfavourable as a result of sea-level rise, it is likely that a sea-level rise of 50 cm or 70 cm (middle to high emission scenarios) would have limited effect but that a 107 cm rise (the extreme scenario) might result in loss of part of the deeper extent of the biotope in some sites. This may be counteracted by landward migration of the biotope if suitable habitat is available. Therefore, resistance is assessed as ‘High’ under the middle and high emission scenarios so that resilience is ‘High’ and sensitivity assessed as ‘Not sensitive’.  But resistance is possibly ‘Medium’ under the extreme scenario so that resilience is ‘Very low’ and sensitivity assessed as ‘Medium’, albeit with ‘Low’ confidence.

Medium
Low
NR
NR
Help
Very Low
High
High
High
Help
Medium
Low
Low
Low
Help
Sea level rise (high) [Show more]

Sea level rise (high)

High emission scenario benchmark: a 70 cm rise in average UK by the end of this century (2018-2100). Further detail.

Evidence

Sea-level rise is occurring through a combination of thermal expansion and ice melt.  Sea levels have risen 1-3 mm/yr. in the last century (Cazenave & Nerem, 2004, Church et al., 2004, Church & White, 2006). This biotope occurs on stony mixed sediment, at 0 – 10 m depth, in full or variable salinity, in sheltered or moderately exposed conditions, with weak or very weak tidal currents (JNCC, 2015), and is common in sea lochs in Scotland.

Understanding how sea-level rise will affect exposure or tidal energy, is fraught with uncertainty, although evidence appears to suggest that any alterations will be non-linear (Pickering et al., 2012, Li et al., 2016). Modelling potential outcomes of sea-level rise on the tidal and residual currents in the Bohai Sea, China showed effects were site-dependent, with energy either increasing or decreasing (Li et al., 2016). Similarly, Pickering et al. (2012) found a similar pattern around the UK for tidal amplitude. The effects of sea-level rise and increased wave action may be increased further due to storms and storm surges.  IPCC (2019) note that the frequency of extreme sea-level events (e.g. due to storms) are predicted to increase as sea-level rises, however, there is no consensus on the future storm and, hence, wave climate around UK coasts (Mossman et al., 2015; Lowe et al., 2018; Palmer et al., 2018).

Sensitivity assessment. It is difficult to assess the effect of sea-level rise scenarios on exposure or tidal energy, as evidence predicts that any changes will be site-specific. This biotope occurs from the sublittoral fringe down to 10 m, although all three characteristic species (Saccharina latissima, Psammechinus miliaris and Modiolus modiolus) are known to have a more extensive depth range, and as long as tidal currents or exposure did not become unfavourable as a result of sea-level rise, it is likely that a sea-level rise of 50 cm or 70 cm (middle to high emission scenarios) would have limited effect but that a 107 cm rise (the extreme scenario) might result in loss of part of the deeper extent of the biotope in some sites. This may be counteracted by landward migration of the biotope if suitable habitat is available. Therefore, resistance is assessed as ‘High’ under the middle and high emission scenarios so that resilience is ‘High’ and sensitivity assessed as ‘Not sensitive’.  But resistance is possibly ‘Medium’ under the extreme scenario so that resilience is ‘Very low’ and sensitivity assessed as ‘Medium’, albeit with ‘Low’ confidence.

High
Low
NR
NR
Help
High
High
High
High
Help
Not sensitive
Low
Low
Low
Help
Sea level rise (middle) [Show more]

Sea level rise (middle)

Middle emission scenario benchmark: a 50 cm rise in average UK sea-level rise by the end of this century (2081-2100). Further detail.

Evidence

Sea-level rise is occurring through a combination of thermal expansion and ice melt.  Sea levels have risen 1-3 mm/yr. in the last century (Cazenave & Nerem, 2004, Church et al., 2004, Church & White, 2006). This biotope occurs on stony mixed sediment, at 0 – 10 m depth, in full or variable salinity, in sheltered or moderately exposed conditions, with weak or very weak tidal currents (JNCC, 2015), and is common in sea lochs in Scotland.

Understanding how sea-level rise will affect exposure or tidal energy, is fraught with uncertainty, although evidence appears to suggest that any alterations will be non-linear (Pickering et al., 2012, Li et al., 2016). Modelling potential outcomes of sea-level rise on the tidal and residual currents in the Bohai Sea, China showed effects were site-dependent, with energy either increasing or decreasing (Li et al., 2016). Similarly, Pickering et al. (2012) found a similar pattern around the UK for tidal amplitude. The effects of sea-level rise and increased wave action may be increased further due to storms and storm surges.  IPCC (2019) note that the frequency of extreme sea-level events (e.g. due to storms) are predicted to increase as sea-level rises, however, there is no consensus on the future storm and, hence, wave climate around UK coasts (Mossman et al., 2015; Lowe et al., 2018; Palmer et al., 2018).

Sensitivity assessment. It is difficult to assess the effect of sea-level rise scenarios on exposure or tidal energy, as evidence predicts that any changes will be site-specific. This biotope occurs from the sublittoral fringe down to 10 m, although all three characteristic species (Saccharina latissima, Psammechinus miliaris and Modiolus modiolus) are known to have a more extensive depth range, and as long as tidal currents or exposure did not become unfavourable as a result of sea-level rise, it is likely that a sea-level rise of 50 cm or 70 cm (middle to high emission scenarios) would have limited effect but that a 107 cm rise (the extreme scenario) might result in loss of part of the deeper extent of the biotope in some sites. This may be counteracted by landward migration of the biotope if suitable habitat is available. Therefore, resistance is assessed as ‘High’ under the middle and high emission scenarios so that resilience is ‘High’ and sensitivity assessed as ‘Not sensitive’.  But resistance is possibly ‘Medium’ under the extreme scenario so that resilience is ‘Very low’ and sensitivity assessed as ‘Medium’, albeit with ‘Low’ confidence.

High
Low
NR
NR
Help
High
High
High
High
Help
Not sensitive
Low
Low
Low
Help

Hydrological Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Temperature increase (local) [Show more]

Temperature increase (local)

Benchmark. A 5°C increase in temperature for one month, or 2°C for one year. Further detail

Evidence

The temperature isotherm of 19-20°C has been reported as limiting Saccharina latissima geographic distribution (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990) however, the optimal temperature range for sporophyte growth is 10-15°C (Bolton & Lüning, 1982). Bolton & Lüning (1982) observed that sporophyte growth was inhibited by 50-70% at 20°C and following 7 days at 23°C all specimens completely disintegrated. In the field Saccharina latissima has shown significant regional variation in its acclimation to temperature changes, for example Gerard & Dubois (1988) observed sporophytes of Saccharina latissima which were regularly exposed to ≥20°C could tolerate these temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C. Therefore the response of Saccharina latissima to a change in temperatures is likely to be locally variable.

Andersen et al. (2011) transplanted Saccharina latissima in the Skagerrak region, Norway and from 2006-2009. There was annual variation however high mortality occurred from August-November within each year of the experiment. In 2008 of the original 17 sporophytes 6 survived from March-September (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration which temperatures remain above 20°C. High sea temperature has been linked to slow growth of Saccharina latissima which is likely to decrease the photosynthetic ability of, and increase the vulnerability of Saccharina latissima to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). These factors combined with establishment of annual filamentous algae in Skagerrak, Norway are likely to prevent the establishment of self sustaining populations in the area (Anderson et al., 2011; Moy & Christie, 2012).

Mortensen (1927) reported Psammechinus miliaris was found in Limfjorden, Denmark where winter temperatures are regularly just above 0°C (Ursin, 1960). At Psammechinus miliaris southern range edge, Morocco and the Azores (Mortensen, 1927), winter-summer seawater temperatures range from17-21 °C (Sea temperature, 2015). Furthermore Psammechinus miliaris reproduces in waters around the Faeroes where the summer temperatures seldom exceed 11°C (Ursin, 1960). The optimal temperature tolerance is therefore likely to be between 0-21°C.

Modiolus modiolus is a boreal species that reaches its southern limit in UK waters and forms beds of large individuals only in the north of Britain and Ireland (Hiscock et al., 2004). The depth range of Modiolus modiolus increases at higher latitudes with intertidal specimens more common on northern Norwegian shores where air temperatures are lower (Davenport & Kjørsvik, 1982). Little direct information on temperature tolerance in Modiolus modiolus was found, however, its upper lethal temperature is lower than that for Mytilus edulis (Bayne, 1976) by about 4°C (Henderson, 1929, cited in Davenport & Kjørsvik, 1982). Subtidal populations are protected from major, short-term changes in temperature by their depth. However, Holt et al. (1998) suggested that because Modiolus modiolus reaches its southern limit in British waters it may be susceptible to long-term increases in summer water temperatures. Hiscock et al. (2004) suggest that warmer seas may prevent recovery of damaged beds and recruitment to undamaged beds so that decline in occurrence of beds can be expected at least in the south of their range. Declines of horse mussel beds in Strangford Lough (Magorrian, 1995) may be linked to increased water temperatures but other factors such as trawling have also contributed to changes.

SS.SMp.KSwSS.SlatMxVS is distributed from the west coast of Scotland to Shetland (Connor et al., 2004). At this latitude sea surface temperature ranges from 14.5-16.9°C in summer and 4-10°C in winter (Beszczynska-Möller & Dye, 2013).

Sensitivity assessment. A 5°C increase for one month combined with high UK summer temperatures may cause mortality in Saccharina latissima populations that are not acclimated to >20°C. Modiolus modiolus is a boreal species, and the fact that dense aggregations seem to reach their southerly limit around British shores suggests this species would be sensitive to acute and chronic increases in temperature. Resistance has been assessed as Low and resilience as Medium. Sensitivity has been assessed as Medium.

Low
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Temperature decrease (local) [Show more]

Temperature decrease (local)

Benchmark. A 5°C decrease in temperature for one month, or 2°C for one year. Further detail

Evidence

Saccharina lattissima has a lower temperature threshold for sporophyte growth at 0°C (Lüning, 1990). Mortensen (1927) reported Psammechinus miliaris was found in Limfjorden, Denmark where winter temperatures are regularly just above 0°C. Modiolus modiolus is a boreal species that reaches its southern limit in UK waters and forms beds of large individuals only in the north of Britain and Ireland (Hiscock et al., 2004). Davenport & Kjørsvik (1982) suggested that its inability to tolerate temperature change was a factor preventing Modiolus modiolus from colonizing the intertidal in the UK. Intertidal specimens were more common on northern Norwegian shores (Davenport & Kjørsvik, 1982). Subtidal populations are protected from major, short-term changes in temperature by their depth. Subtidal red algae can survive at temperatures between -2°C and 18-23°C (Lüning, 1990; Kain & Norton, 1990).

Sensitivity assessment. None of the characterizing species are likely to be adversely affected by a temperature decrease at the benchmark level. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not sensitive’.

 

High
High
High
High
Help
High
High
High
High
Help
Not sensitive
High
High
High
Help
Salinity increase (local) [Show more]

Salinity increase (local)

Benchmark. A increase in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

Evidence

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. The affect of long-term salinity changes (>5 days) or salinity >60 PSU on Saccharina latissima’ photosynthetic ability was not tested.

Gezelius (1963) reported mature individuals of the littoral growth form of Psammechinus miliaris had an optimal salinity range of 20-32ppt but could tolerate 40ppt, and the sub-littoral growth form had an optimal salinity tolerance of 26-38 ppt but could tolerate as high as 40 ppt.

Modiolus modiolus are osmoconfers, in short-term fluctuating salinities valve closure limits exposure to salinity changes in the surrounding waters, although slow diffusion through the byssal aperture means that the osmolarity of fluids will eventually increase (Shumway, 1977; Davenport & Kjørsvik,1982). Experimental evidence for short-term tolerances of Modiolus modious to increased salinities is provided by Pierce (1970). Modiolus modious was exposed to a range of salinities between 1.5 and 54 psu and survived for 21 days (the duration of the experiment) at salinities between 27 and 41‰ However above 41‰ was considered lethal, and 50% of the individuals within the hypersaline? experiments died(Pierce, 1970)..

Sensitivity assessment. SS.SMp.KSwSS.SlatMxVS is found in both full and variable salinity, this assessment assumes an increase to greater than full salinity (>40‰). The evidence suggests Saccharina latissima can tolerate exposure to hypersaline conditions of 55‰ for short periods however the effects of long-term salinity increases are unknown. >40‰ would be outside Psammechinus miliaris optimal salinity range and may cause minor declines in growth. Modiolus modiolus abundance may also decline. Resistance has been assessed as ‘Low’, resilience as ‘Medium’. The sensitivity of this biotope to an increase in salinity has been assessed as ‘Medium’.

 

Low
High
High
High
Help
Medium
High
Medium
High
Help
Medium
Medium
Medium
High
Help
Salinity decrease (local) [Show more]

Salinity decrease (local)

Benchmark. A decrease in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

Evidence

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability. After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at approx. 30% of control. After 5 days at 5 psu Saccharina latissima specimens became bleached and showed signs of severe damage. The affect of long-term salinity changes (>5 days) or salinity >60 PSU on Saccharina latissima’ photosynthetic ability was not tested. The experiment was conducted on Saccharina latissima from the Arctic, and at extremely low water temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at temperate latitudes. It is therefore possible that resident Saccharina latissima of the UK maybe be able to acclimate to salinity changes more effectively.

Lindahl & Runnström (1929) showed that Psammechinus miliaris from the littoral (Z form) and sublittoral (S form) had different salinity optima. Gezelius (1963) reported the littoral growth form had an optimal salinity range of 20-32 ppt, whereas the sub-littoral growth form 26-38 ppt. Mature examples of the littoral growth form tolerated 15 ppt for a period of 27 days however were not able to produce gametes at this salinity.

Davenport & Kjørsvik (1982) reported the presence of large horse mussels in rock pools at 16 psu in Norway, subject to freshwater inflow, and noted that they were probably exposed to lower salinities. By keeping the shell valves closed the fluid in the mantle cavity of two individuals was found to be at a salinity of 28–29 despite some hours of exposure (Davenport & Kjørsvik, 1982). Short-term tolerances to a salinity of 15 were similarly identified for Modiolus modiolus from the White Sea, north west Russia (where salinity is typically 25), whereas salinity levels of between 30 and 35 appeared optimal. However, after a winter and spring of extremely high rainfall, populations of Modiolus modiolus at the entrance to Loch Leven (near Fort William) were found dead, almost certainly due to low salinity outflow (K. Hiscock, pers. comm). Holt et al. (1998) reported that dense populations of very young Modiolus modiolus do occasionally seem to occur sub tidally in estuaries, but the species is more poorly adapted to fluctuating salinity than many other mussel species (Bayne, 1976) and dense populations of adults are not found in low salinity areas.

Laboratory experiments exposing Modiolus modiolus to reduced salinity water have demonstrated short-term effects. Pierce (1970) exposed Modiolus spp. to a range of salinities between 1.5 and 54 psu and reported that Modiolus modiolus survived for 21 days (the duration of the experiment) between 27 and 41 psu. Shumway (1977) exposed individual Modiolus modiolus to simulated tidal, (sinusoidal) fluctuations between full seawater (salinity 32‰) and 50% freshwater and to more abrupt changes in salinity in laboratory experiments. Individual Modiolus modiolus that were able to close their valves survived 10 days exposure to salinity changes compared with individuals which had their shells wedged open that survived for 3 days of the experiment only. Exposure to reduced salinities has been observed to lead to reduced ctenidial ciliary stroke, (after 3 days at a salinity of 15 and 10°C, Schlieper et al., 1958) and increased intracellular liquid/water (Gainey, 1994).

Sensitivity assessment. SS.SMp.KSwSS.SlatMxVS is found in both full and variable salinity, this assessment assumes a decrease to reduced salinity (18-30‰). Such a decrease in salinity may cause a decline in Saccharina latissima sporophyte growth and negatively affect Psammechinus miliaris reproduction. The available evidence indicates that Modiolus modiolus is an osmoconformer able to tolerate decreases in salinity for a short period. However, a decrease in salinity at the pressure benchmark from full salinity or variable to reduced (18-30 ppt) would be considered to result in the mortality of the characterizing species within the biotope over the course of a year. Resistance has been assessed ’Low‘. Resilience has been assessed as ’Medium‘. Sensitivity has been assessed as ’Medium’.

Low
Medium
High
Medium
Help
Medium
High
Medium
High
Help
Medium
Medium
Medium
Medium
Help
Water flow (tidal current) changes (local) [Show more]

Water flow (tidal current) changes (local)

Benchmark. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2 m/s for more than one year. Further detail

Evidence

SS.SMp.KSwSS.SlatMxVS is found from strong (1.5-3 m/sec) -very weak (negligible) tidal streams (Connor et al., 2004). Indicating the characterizing species are tolerant of tidal streams within this range.

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites, the first had maximal water velocities of 0.3m/sec and the second 0.1m/sec. At site 1 Saccharina latissima had significantly larger biomass than at site 2 (16 kg/m to 12 kg/m respectively). Peteiro & Freire (2013) suggested that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard & Mann (1979) found Saccharina latissima productivity is reduced in moderately strong tidal streams (≤1 m/sec) when compared to weak tidal streams (<0.5 m/sec). Despite the results published in Gerard & Mann (1979) Saccharina latissima can characterize or be a dominant in the tide swept biotopes IR.MIR.KT.XKTX & IR.MIR.KT.SlatT, which have been recorded from very strong (>3 m/sec) to moderately strong tidal streams (≤1 m/sec) (Connor et al., 2004), indicating Saccharina latissima can tolerate greater tidal streams than <1 m/sec.

Holt et al. (1998) suggested water movement was important in the development of dense reefs and beds of Modiolus modiolus. It is likely therefore that there is an optimum range of water flows, currently unknown, which are strong enough to disperse larvae and provide food but are not so strong that the current removes the bed, prevents settlement of larvae within beds (which is key for self-recruiting populations) or prevents the extension of feeding siphons. Conversely, decreased flow rates may inhibit larval settlement and the supply of suspended food and allow greater siltation on beds.

Adult Modiolus modiolus occur commonly in areas with moderate to high water exchange in Nova Scotia (Wildish & Peer, 1983; Wildish & Kristmanson, 1985, 1994; Wildish & Fader, 1998; Wildish et al., 1998), and low field densities have been correlated with low current regimes and reduced food availability. Densities of up to 220 individuals/m2 have been recorded from the Faroese shelf (Dinesen, 1999) where maximal tidal current speed has been estimated to be between 79 and 98 cm/s at two Modiolus modiolus sites (Nørrevang et al., 1994: BIOFAR Stn. 661 & 662, cited from Dinesen & Morton, 2014). Mair et al. (2000) also observed that in Scottish sites with Modiolus modiolus beds, densities were greater where there were high tidal currents.

Sensitivity assessment. Large scale changes tidal velocities (>1m/sec) may influence biotope structure. However, the available evidence suggests that a change in flow velocities of between 0.1-0.2m/sec would not have a significant effect. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.

High
Medium
High
High
Help
High
High
High
High
Help
Not sensitive
Medium
High
High
Help
Emergence regime changes [Show more]

Emergence regime changes

Benchmark.  1) A change in the time covered or not covered by the sea for a period of ≥1 year or 2) an increase in relative sea level or decrease in high water level for ≥1 year. Further detail

Evidence

SS.SMp.KSwSS.SlatMxVS is recorded from the low shore to 20 m BCD An increase in emergence will result in an increased risk of desiccation and mortality of Saccharina latissima and Modiolus modiolus. Removal of canopy forming kelps, through desiccation, has also been shown to increase desiccation and mortality of understorey macro-algae (Hawkins & Harkin, 1985). Providing that suitable substrata are present, the biotope is likely to re-establish further down the shore within a similar emergence regime to that which existed previously.

Sensitivity assessment. Resilience has been assessed as ‘Low’. Resistance as ‘Medium’. The sensitivity of this biotope to a change in emergence is considered as ‘Medium’.

Low
Low
NR
NR
Help
Medium
High
Low
High
Help
Medium
Low
Low
Low
Help
Wave exposure changes (local) [Show more]

Wave exposure changes (local)

Benchmark. A change in near shore significant wave height of >3% but <5% for more than one year. Further detail

Evidence

At the time of writing there is limited direct evidence for the effect of increases in wave exposure on Saccharina latissima or Psammechinus miliaris other than they are predominantly recorded in wave sheltered locations (Birkett et al., 1998; Kelly, 2000). Similarly there was no direct evidence for the effect of increased wave exposure on Modiolus modiolus. However, Modiolus modiolus is recorded from moderately exposed-very sheltered locations (MNCR data see below). Due to their size (adults: 10-22 cm (Tyler-Walters, 2007) may become dislodged if wave action increases above this range within shallow examples of SS.SMp.KSwSS.SlatMxVS. Furthermore an increase in wave action may also remove smaller sediment fractions and therefore affect the biological community.

SS.SMp.KSwSS.SlatMxVS is recorded from sheltered-ultra wave sheltered sites (Connor et al., 2004). Therefore, a large increase in wave exposure to e.g. moderate wave exposure is likely to have a fundamental effect on local sediment and characterizing species. However a change in nearshore significant wave height >3% but <5%is not likely to have a significant effect.

Sensitivity assessment. Wave exposure is one of the principal defining features biotope structures, and large changes in wave exposure are likely to alter the relative abundance of the dominant macro-algae, grazing and understorey community, alter the sedimentary substratum and hence, the biotope. However a change in near shore significant wave height of 3-5% is unlikely to have any significant effect on SS.SMp.KSwSS.SlatMxVS. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not Sensitive’ at the benchmark level.

Please note the latest version of the JNCC National Biodiversity Database was used as the source of the MNCR data. However, it should be noted that a) not all biotopes were recorded with full habitat/site information, and b) the extraction only recorded the habitat conditions where the biotope was recorded and not the relevant species presence, abundance or biomass within each site. Therefore, this information represents the range of habitat conditions in which the biotopes can be found rather than identifying optimum habitats for species. This caveat applies to all assessments made using this data.

High
Low
NR
NR
Help
High
High
High
High
Help
Not sensitive
Low
Low
Low
Help

Chemical Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Transition elements & organo-metal contamination [Show more]

Transition elements & organo-metal contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Bryan (1984) suggested that the general order for heavy metal toxicity in seaweeds is: Organic Hg > inorganic Hg > Cu > Ag > Zn > Cd > Pb. Cole et al,. (1999) reported that Hg was very toxic to macrophytes. The effects of copper, zinc and mercury on Saccharina latissima have been investigated by Thompson & Burrows (1984). They observed that the growth of sporophytes was significantly inhibited at 50 µg Cu /l, 1000 µg Zn/l and 50 µg Hg/l. Zoospores were found to be more intolerant and significant reductions in survival rates were observed at 25 µg Cu/l, 1000 µg Zn/l and 5 µg/l.

At the time of writing, little is known about the effects of heavy metals on echinoderms. Bryan (1984) reported that early work had shown that echinoderm larvae were intolerant of heavy metals, e.g. the intolerance of larvae of Paracentrotus lividus to copper (Cu) had been used to develop a water quality assessment. Kinne (1984) reported developmental disturbances in Echinus esculentus exposed to waters containing 25 µg / l of copper (Cu). Sea-urchins, especially the eggs and larvae, are used for toxicity testing and environmental monitoring (reviewed by Dinnel et al. 1988). Taken together with the findings of Gomez & Miguez-Rodriguez (1999) above it is likely that echinoderms are intolerant of heavy metal contamination.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Hydrocarbon & PAH contamination [Show more]

Hydrocarbon & PAH contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Saccharina latissima fronds, being predominantly subtidal, would not come into contact with freshly released oil but only to sinking emulsified oil and oil adsorbed onto particles (Birkett et al., 1998). The mucilaginous slime layer coating of laminarians may protect them from smothering by oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al. (1995) reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelp forests. Similarly, surveys of subtidal communities at a number sites between 1-22.5m below chart datum showed no noticeable impacts of the Sea Empress oil spill and clean up (Rostron & Bunker, 1997). An assessment of holdfast fauna in Laminaria showed that although species richness and diversity decreased with increasing proximity to the Sea Empress oil spill, overall the holdfasts contained a reasonably rich and diverse fauna, even though oil was present in most samples (Sommerfield & Warwick, 1999).

Echinoderms seem especially sensitive to the toxic effects of oil, likely because of the large amount of exposed epidermis (Suchanek, 1993). Schäfer & Köhler (2009) found 20 day exposure to sub-lethal concentrations of phenanthrene resulted in severe ovarian lesions of Psammechinus miliaris limiting the production of gametes.

Following the Torrey Canyon incident, large numbers of dead Psammechinus miliaris were found in the vicinity of Sennen, UK possibly due to exposure to the oil spill and the heavy spraying of hydrocarbon based dispersants in that area (Smith, 1968). Other significant effects have been observed in other species of urchins. For example, mass mortality of the echinoderm Echinocardium cordatum was observed shortly after the Amoco Cadiz oil spill (Cabioch et al., 1978) and reduced abundance of the species was detectable up to >1000m away one year after the discharge of oil-contaminated drill cuttings in the North Sea (Daan & Mulder, 1996). In the Mediterranean around Naples, urchins were absent from areas which has visible signs of massive pollution of both sewage and oil. Echinus esculentus populations in the vicinity of an oil terminal in A Coruna Bay, Spain, showed developmental abnormalities in the skeleton. The tissues contained high levels of aliphatic hydrocarbons, naphthalenes, pesticides and heavy metals (Zn, Hg, Cd, Pb, and Cu) (Gomez & Miguez-Rodriguez 1999). But the observed effects may have been due to a single contaminant or synergistic effects of all present.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Synthetic compound contamination [Show more]

Synthetic compound contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Johansson (2009) exposed samples of Saccharina latissima to several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Smith (1968) noted that epiphytic and benthic red algae were intolerant of dispersant or oil contamination due to the Torrey Canyon oil spill; only the epiphytes Crytopleura ramosa and Spermothamnion repens and some tufts of Jania rubens survived together with Osmundea pinnatifida, Gigartina pistillata and Phyllophora crispa from the sublittoral fringe.

Considerable observations and work, mainly on Echinus esculentus but also on Psammechinus miliaris (Smith, 1968; Gomez & Miguez-Rodriguez, 1999; Dinnel et al., 1988) indicate high intolerance to synthetic contaminants. Newton & McKenzie (1995) state that echinoderms tend to be very intolerant of various types of marine pollution, but there is little more detailed information than this. Following the Torrey Canyon incident, large numbers of dead Psammechinus miliaris in the vicinity of Sennen, UK presumably due to the heavy spraying of dispersants in that area and exposure to the oil spill (Smith, 1968).

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Radionuclide contamination [Show more]

Radionuclide contamination

Benchmark. An increase in 10µGy/h above background levels. Further detail

Evidence

No evidence

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Introduction of other substances [Show more]

Introduction of other substances

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
De-oxygenation [Show more]

De-oxygenation

Benchmark. Exposure to dissolved oxygen concentration of less than or equal to 2 mg/l for one week (a change from WFD poor status to bad status). Further detail

Evidence

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae (Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the oxygen depletion is short-term (Frieder et al., 2012). A rapid recovery from a state of low oxygen is expected if the environmental conditions are transient. If levels do drop below 4 mg/l negative effects on these organisms can be expected with adverse effects occurring below 2mg/l (Cole et al., 1999).

Theede et al. (1969) examined the relative tolerance of gill tissue from several species of bivalve to exposure to 0.21 mg/l O2 with or without 6.67 mg of sulphide (at 10 °C and 30 psu). Modiolus modiolus tissue was found to be the most resistant of the species studied, retaining some ciliary activity after 120 hrs compared with 48 hrs for Mytilus edulis.

Under hypoxic conditions echinoderms become less mobile and stop feeding. Death of a bloom of the phytoplankton Gyrodinium aureolum in Mounts Bay, Penzance in 1978 produced a layer of brown slime on the sea bottom. This resulted in the death of fish and invertebrates, including Echinus esculentus, presumably due to anoxia caused by the decay of the dead dinoflagellates (Griffiths et al., 1979). Spicer (1995) investigated the effects of environmental hypoxia on the oxygen and acid-base status of Psammechinus miliaris. Oxygen uptake is not regulated by this species during progressive hypoxia. The habitat of this species includes rock pools on the shore that can experience quite severe hypoxia or even anoxia. Psammechinus miliaris must be able to tolerate low oxygen conditions provided the event is brief. In prolonged events, subtidal Psammechinus miliaris would presumably react in a similar fashion to the Echinus esculentus above.

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit macroalgal photosynthesis and respiration but not cause a loss of the macroalgae population directly. Resistance has been assessed as ‘Medium’, Resilience as ‘High’. Sensitivity has been assessed as ‘Low’ at the benchmark level.

Medium
Medium
High
High
Help
High
Medium
High
High
Help
Low
Medium
High
High
Help
Nutrient enrichment [Show more]

Nutrient enrichment

Benchmark. Compliance with WFD criteria for good status. Further detail

Evidence

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macroalgal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

 

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reported Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Norwegian Salmon farms, where elevated ammonium can be readily absorbed. Read et al. (1983) reported after the installation of a new sewage treatment works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant where previously it had been absent.

Navarro & Thompson (1996) suggested that Modiolus modiolus was adapted to an intermittent and often inadequate food supply. The persistence of a Modiolus modiolus population in the vicinity of a sewage sludge dumping site, North Norfolk (Richardson et al., 2001) suggests that the species is tolerant of high nutrient levels. Moderate nutrient enrichment may, therefore, be beneficial by increasing phytoplankton productivity and organic particulates, and hence food availability.

Sensitivity assessment. The evidence suggests that enrichment would not directly affect Saccharina latissima and may benefit Modiolus modiolus. Nutrient enrichment may increase turbidity which may decrease water clarity (see above) and therefore macroalgae photosynthesis. But This biotope has been assessed as 'Not sensitive' at the pressure benchmark, that assumes compliance with good status as defined by the WFD.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not sensitive
NR
NR
NR
Help
Organic enrichment [Show more]

Organic enrichment

Benchmark. A deposit of 100 gC/m2/yr. Further detail

Evidence

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected 6 marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macroalgal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

The persistence of a Modiolus modiolus population in the vicinity of a sewage sludge dumping site, North Norfolk (Richardson et al., 2001) suggests that the species is tolerant of high levels of organic matter. At the pressure benchmark which refers to enrichment rather than gross organic pollution (Tillin & Tyler-Walters, 2014) the extra rate of organic matter accumulation may not far exceed the natural background level, particularly in sheltered areas.

Sensitivity assessment. The evidence suggests that enrichment would not directly affect the characterizing species but that the community may suffer an overall reduction in species richness (Johnston & Roberts, 2009). In addition, organic enrichment may increase turbidity which may decrease water clarity and therefore macro-algae photosynthesis (see water clarity above). Resistance has therefore been assessed as ‘Medium’, resilience as ‘High’, and sensitivity has been assessed as ’Low’.

Medium
High
High
High
Help
High
High
High
High
Help
Low
High
High
High
Help

Physical Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Physical loss (to land or freshwater habitat) [Show more]

Physical loss (to land or freshwater habitat)

Benchmark. A permanent loss of existing saline habitat within the site. Further detail

Evidence

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’). Sensitivity within the direct spatial footprint of this pressure is, therefore ‘High’. Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Physical change (to another seabed type) [Show more]

Physical change (to another seabed type)

Benchmark. Permanent change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa. Further detail

Evidence

If sediment were replaced with rock or artificial substrata, this would represent a fundamental change to the biotope (Macleod et al., 2014). All the characterizing species within this biotope can grow in rock biotopes (Birkett et al., 1998; Connor et al., 2004), however SS.SMp.KSwSS is by definition a sediment biotope and introduction of rock would change it to a rock based biotope.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very low’. Sensitivity has been assessed as ‘High’.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Physical change (to another sediment type) [Show more]

Physical change (to another sediment type)

Benchmark. Permanent change in one Folk class (based on UK SeaMap simplified classification). Further detail

Evidence

The benchmark for this pressure refers to a change in one Folk class. The pressure benchmark originally developed by Tillin et al., (2010) used the modified Folk triangle developed by Long (2006) which simplified sediment types into four categories: mud and sandy mud, sand and muddy sand, mixed sediments and coarse sediments. The change referred to is therefore a change in sediment classification rather than a change in the finer-scale original Folk categories (Folk, 1954). The change in one Folk class is considered to relate to a change in classification to adjacent categories in the modified Folk triangle. For mixed sediments and sand and muddy sand habitats a change in one Folk class may refer to a change to any of the sediment categories. Dredging and dumping of sediment, and infrastructure developments, can lead to changes in sediment character.

SS.SMp.KSwSS.SlatMxVS occurs on mixed substrata, therefore within this pressure a change in one folk class relates to a change to either “Coarse sediment”, “Mud and sandy Mud” and “Sand and sandy mud”. Macro-algae are likely to successfully recruit onto the larger sediment/small rock fractions within these biotopes (e.g. gravel, pebbles, cobbles).Therefore, if the proportion of stabilised large sediment/small rock fractions increased this may benefit these biotopes. Conversely if the proportion of smaller sediment fractions increased within these biotopes (as with “Mud and sandy Mud” and “Sand and sandy mud”) then macro-algal recruitment would likely be significantly reduced.

Sensitivity assessment. Resistance has been assessed as ‘None’, resilience as Very low (the pressure is a permanent change), and sensitivity as High. 

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Habitat structure changes - removal of substratum (extraction) [Show more]

Habitat structure changes - removal of substratum (extraction)

Benchmark. The extraction of substratum to 30 cm (where substratum includes sediments and soft rock but excludes hard bedrock). Further detail

Evidence

SS.SMp.KSwSS.SlatMxVS is a sediment biotope, found on a varied mixture of sediment and rock fractions. Extraction of substratum to 30 cm is likely to remove small sediment fractions (e.g. gravel) and may mobilize the remaining larger rock fractions (e.g. cobbles) causing high mortality within the resident community.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘Medium’. Sensitivity has been assessed as ‘Medium’.

None
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Abrasion / disturbance of the surface of the substratum or seabed [Show more]

Abrasion / disturbance of the surface of the substratum or seabed

Benchmark. Damage to surface features (e.g. species and physical structures within the habitat). Further detail

Evidence

Abrasion of the substratum e.g. from bottom or pot fishing gear, cable laying etc. may cause localised mobility of the substrata and mortality of the resident community. The effect would be situation dependent however if bottom fishing gear were towed over a site it may mobilise a high proportion of the rock substrata and cause high mortality in the resident community e.g. overturning cobbles and causing mortality in the attached algal canopies.

No specific examples of anthropogenic abrasion could be found for this biotope. However, bottom fishing gear (e.g. scallop dredging) are known to cause high mortality in bycatch species by overturning sediment and physically crushing fragile species (Bradshaw et al., 2001), which includes urchins.

The test of Psammechinus miliaris is brittle and easily damaged by impact or abrasion. Spines and podia may be damaged or broken off. The spines may provide some degree of cushioning for the test. Beam trawling was reported to remove ca 20 to 50% of this species (Kaiser & Spencer, 1994), and the impact of scallop dredging is likely to be similar. Damage to the test will generally be lethal, if not outright because internal organs become exposed to predators and possible infection.

Sensitivity assessment. Resistance has been assessed as ‘Low’, Resilience as ‘Medium’. Sensitivity has been assessed as ‘Medium’.

 

Low
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Penetration or disturbance of the substratum subsurface [Show more]

Penetration or disturbance of the substratum subsurface

Benchmark. Damage to sub-surface features (e.g. species and physical structures within the habitat). Further detail

Evidence

Penetration and/or disturbance of the substrate below the surface of the seabed, may cause localised mobility of the substrata and mortality of the resident community. No specific examples of anthropogenic penetration could be found for this biotope. However, bottom fishing gear (e.g. scallop dredging) are known to cause high mortality in bycatch species by overturning sediment and physically crushing fragile species (Bradshaw et al., 2001), and may also cause high mortality in in-fauna species such as Cerianthus lloydii.

Sensitivity assessment. Resistance has been assessed as ‘None’, Resilience as ‘Medium’. Sensitivity has been assessed as ‘Medium’.

None
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help
Changes in suspended solids (water clarity) [Show more]

Changes in suspended solids (water clarity)

Benchmark. A change in one rank on the WFD (Water Framework Directive) scale e.g. from clear to intermediate for one year. Further detail

Evidence

Suspended Particle Matter (SPM) concentration has a linear relationship with sub surface light attenuation (Kd) (Devlin et al., 1998). Light penetration influences the maximum depth at which kelp species can grow and it has been reported that laminarians grow at depths at which the light levels are reduced to 1 percent of incident light at the surface. Maximal depth distribution of laminarians therefore varies from 100 m in the Mediterranean to only 6-7 m in the silt laden German Bight. In Atlantic European waters, the depth limit is typically 35 m. In very turbid waters the depth at which kelp is found may be reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in light attenuation by suspended sediment (Lüning, 1990; Birkett et al. 1998b).​ Laminaria spp. show a decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg, 2009). An increase in water turbidity will likely affect the photosynthetic ability of kelp, decrease abundance and density. 

Psammechinus miliaris is omnivorous, feeding directly on live and dead algae but also on an array of attached fauna (Kelly, 2000). The feeding plasticity of Psammechinus miliaris is likely to ameliorate some of the effects of diminished kelp growth as a result of decreased light availability.

Changes in light penetration or attenuation associated with this pressure are not relevant to Modiolus modiolus. However alterations in the availability of food or the energetic costs in obtaining food or changes in scour could either increase or decrease habitat suitability for Modiolus modiolus. Modiolus modiolus is found in a variety of turbid and clear water conditions (Holt et al., 1998). Decreases in turbidity may increase phytoplankton productivity and potentially increase food availability. Therefore, Modiolus modiolus may benefit from reduced turbidity.

Sensitivity Assessment. A decrease in turbidity is likely to support enhanced growth (and possible habitat expansion) and is therefore not considered in this assessment. Psammechinus miliaris and Modiolus modiolus are resilient to changes in water clarity. An increase in water clarity from clear to intermediate (10-100 mg/l) represent a change in light attenuation of ca 0.67-6.7 Kd/m, and is likely to result in a greater than 50% reduction in photosynthesis of Laminariales. Therefore, the dominant kelp species will probably suffer a severe decline and resistance to this pressure is assessed as ‘None’. Resilience to this pressure is defined as ‘High’ at the benchmark level due to the scale of the impact. Hence, this biotope is regarded as having a sensitivity of ‘Medium‘.

None
High
High
High
Help
High
High
High
High
Help
Medium
High
High
High
Help
Smothering and siltation rate changes (light) [Show more]

Smothering and siltation rate changes (light)

Benchmark. ‘Light’ deposition of up to 5 cm of fine material added to the seabed in a single discrete event. Further detail

Evidence

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years (Parke, 1948)), SS.SMp.KSwSS.SlatMxVS is likely to be dependent on annual Saccharina latissima recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 5 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that kelp gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Psammechinus miliaris is quite small (typically up to 4 cm) and is likely to be inundated by 5 cm of sediment (Jackson, 2008). If unable to 'dig out' of the sediment, deposited sediment may cause mortality. Mature individuals of Modiolus modiolus can reach 10-25 cm and are unlikely to completely inundated by light deposition of up to 5 cm during a discrete event.

SS.SMp.KSwSS.SlatMxVS is recorded from strong (1.5-3 m/sec) to very weak (negligible) tidal streams. Within tide swept examples of SS.SMp.KSwSS.SlatMxVS sediment are likely to be removed within a few tidal cycles. In tidally sheltered examples of SS.SMp.KSwSS.SlatMxVS sediments could remain and recovery rate would be related to sediment retention but will probably be dissipated within a year.

Sensitivity assessment. To reflect the potential effect that deposited sediment could have on Psammechinus miliaris. Resistance has been assessed as ‘Low’, resilience as ‘High’. Sensitivity has been assessed as ‘Low’.

Low
Low
NR
NR
Help
High
High
High
High
Help
Low
Low
Low
Low
Help
Smothering and siltation rate changes (heavy) [Show more]

Smothering and siltation rate changes (heavy)

Benchmark. ‘Heavy’ deposition of up to 30 cm of fine material added to the seabed in a single discrete event. Further detail

Evidence

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage Saccharina latissima sporophytes but will likely affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years (Parke, 1948), SS.SMp.KSwSS.SlatMxVS is likely to be dependent on annual Saccharina latissima recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 5 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that kelp gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Psammechinus miliaris is quite small (typically up to 4 cm) and is likely to be inundated by 30 cm of sediment (Jackson, 2008). If unable to 'dig out' of the sediment, deposited sediment may cause mortality. Mature individuals of Modiolus modiolus can reach 10-25 cm and may also become inundated/smothered by heavy deposition of up to 30 cm during a discrete event.

SS.SMp.KSwSS.SlatMxVS is recorded from strong (1.5-3 m/sec) to very weak (Negligible) tidal streams. Within tide swept examples of SS.SMp.KSwSS.SlatMxVS sediment are likely to be removed within a few tidal cycles. In tidally sheltered examples of SS.SMp.KSwSS.SlatMxVS sediments could remain and recovery rate would be related to sediment retention but will probably be dissipated within a year.

Sensitivity assessment. To reflect the potential effect that deposited sediment could have on Psammechinus miliaris and Modiolus modiolus. Resistance has been assessed as ‘None’, resilience as ‘Medium’. Sensitivity has been assessed as ‘Medium’.

None
Low
NR
NR
Help
High
High
High
High
Help
Medium
Low
Low
Low
Help
Litter [Show more]

Litter

Benchmark. The introduction of man-made objects able to cause physical harm (surface, water column, seafloor or strandline). Further detail

Evidence

Not assessed. There is no evidence to suggest that litter would significantly affect kelp.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Electromagnetic changes [Show more]

Electromagnetic changes

Benchmark. A local electric field of 1 V/m or a local magnetic field of 10 µT. Further detail

Evidence

No evidence

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Underwater noise changes [Show more]

Underwater noise changes

Benchmark. MSFD indicator levels (SEL or peak SPL) exceeded for 20% of days in a calendar year. Further detail

Evidence

Not relevant

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Introduction of light or shading [Show more]

Introduction of light or shading

Benchmark. A change in incident light via anthropogenic means. Further detail

Evidence

There is no evidence to suggest that anthropogenic light sources would affect macroalgae. Shading (e.g. by construction of a pontoon, pier etc) could adversely affect SS.SMp.KSwSS.SlatMxVS in areas where the water clarity is also low, and tip the balance to shade tolerant species, resulting in the loss of Saccharina latissima from areas of the biotope directly within the shaded area, or a reduction in seaweed abundance.

Sensitivity assessment. Resistance is probably 'Low', with a 'High' resilience and a sensitivity of 'Low', albeit with 'low' confidence due to the lack of direct evidence.

Low
Low
NR
NR
Help
Medium
Low
NR
NR
Help
Medium
Low
Low
Low
Help
Barrier to species movement [Show more]

Barrier to species movement

Benchmark. A permanent or temporary barrier to species movement over ≥50% of water body width or a 10% change in tidal excursion. Further detail

Evidence

Not relevant. This pressure is considered applicable to mobile species, e.g. fish and marine mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal of spores, but spore dispersal is not considered under the pressure definition and benchmark.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Death or injury by collision [Show more]

Death or injury by collision

Benchmark. Injury or mortality from collisions of biota with both static or moving structures due to 0.1% of tidal volume on an average tide, passing through an artificial structure. Further detail

Evidence

Not relevant. Collision from grounding vessels is addressed under abrasion above.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Visual disturbance [Show more]

Visual disturbance

Benchmark. The daily duration of transient visual cues exceeds 10% of the period of site occupancy by the feature. Further detail

Evidence

Not relevant

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help

Biological Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Genetic modification & translocation of indigenous species [Show more]

Genetic modification & translocation of indigenous species

Benchmark. Translocation of indigenous species or the introduction of genetically modified or genetically different populations of indigenous species that may result in changes in the genetic structure of local populations, hybridization, or change in community structure. Further detail

Evidence

Saccharina latissima has shown significant regional acclimation to environmental conditions. Gerard & Dubois (1988) found Saccharina latissima sporophytes which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C. It is therefore possible that transplanted eco-types of Saccharina latissima may react differently to environmental conditions that differ from those of their origin.

Modiolus modiolus bed restoration projects may translocate stock to re-populate areas of suitable habitat (Elsasser et al., 2013). However, no evidence was found for detrimental effects arising from this practice, although there is potential for the movement of pathogens and non-indigenous, invasive species.

However, at the time of writing there is No evidence for translocation of any other characzerising species over significant geographic distances. Nor is there any evidence regarding the genetic modification or effects of translocation.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Introduction or spread of invasive non-indigenous species [Show more]

Introduction or spread of invasive non-indigenous species

Benchmark. The introduction of one or more invasive non-indigenous species (INIS). Further detail

Evidence

Competition with invasive macroalgae may be a potential threat to this biotope (de Bettignies et al., 2021). Potential invasives include Undaria pinnatifida and Sargassum muticum.  Sargassum muticum is a circumglobal invasive species (Engelen et al., 2015).  It is recorded (2015) from Norway to Morocco and into the Mediterranean in the eastern Atlantic and from Alaska to Baja California in the eastern Pacific and from southern Russia to southern China in the western Pacific (Engelen et al., 2015).  It colonizes a variety of habitats and can tolerate -1°C to 30°C and survive salinities below 10 ppt.  Although fertilization does not occur below 15 ppt and growth of germlings is limited below 10°C it can complete its life cycle as long as temperatures are over 8°C for at least four months of the year (Engelen et al., 2015).  However, its distribution is limited by the availability of hard substratum (e.g. stones >10 cm) and light (Staeher et al., 2000; Strong & Dring 2011; Engelen et al., 2015).  It is most abundant between 1 and 3 m below mean water.  But it has been recorded at 18 m or 30 m in the clear waters of California.  However, it is a poor competitor under low light and only develops dense canopies in shallow areas (Engelen et al., 2015).

Sargassum muticum was shown to replace and out-compete leathery, canopy-forming macroalgae such as Saccharina latissima, Halidrys siliquosa, and Fucus spp. and, to a lesser degree, understorey species such as Codium fragile, Chondrus crispus and Dictyota dichotoma in Limfjorden, Denmark between 1984 and 1997 (Staehr et al., 2000; Engelen et al., 2015; de Bettignies et al., 2021).  The invasion in Limfjorden had stabilized by 2005 although many of the native macroalgal species continued to decline (Engelen et al., 2015).  In Limfjorden, the distribution of Sargassum muticum was limited to areas with hard substratum, in particular stones > 10 cm in diameter, while smaller stones, gravel and sand were unsuitable.  It was most abundant between 1 and 4 m in depth but had low cover at 0-0.5 m or 4-6 m, in the turbid waters of the Limfjorden.  Limfjorden is wave sheltered although wave exposure has been reported to restrict the growth and survival of Sargassum muticum (Staehr et al., 2000).  Viejo et al. (1995) reported that Sargassum muticum transplanted to wave exposed shores in Spain experienced >80% breakages within a month and that the growth of undamaged plants was significantly lower than that of plants on sheltered shores.  Similarly, Andrew & Viejo (1998) noted that Sargassum muticum was restricted to intertidal rockpools in wave exposed sites in the Bay of Biscay.

Strong & Dring (2011) used canopy removal experiments to investigate inter- and intra-species competition between Sargassum muticum and Saccharina latissima in the Dorn, Strangford Lough, N. Ireland.  The Dorn consists of tidal pools, very sheltered from wave action but with moderately strong tidal streams (1-2 knots).  Sargassum muticum grew better in mixed stands with Saccharina latissima than in the highest density monospecific stands examined.  However, the growth of Saccharina was not affected by the proportion of Sargassum in mixed stands.  They concluded that Saccharina was not impacted significantly by the alien species while Sargassum benefited from growth in mixed stands.  Experimental manipulation of subtidal algal canopies in San Juan Islands, Washington State, USA, showed that Sargassum muticum reduced the abundance of native macroalgae, including the kelp Laminaria bongardiana due to shadingHowever, experimental removal of Sargassum resulted in the recovery of native species within about one year (Britton-Simmons, 2004; Engelen et al., 2015).  The negative effects of Sargassum muticum on native macroalgae are mainly due to competition for light, rather than changes in nutrient availability, sedimentation or water flow (Britton-Simmons, 2004; Engelen et al., 2015).  

Undaria pinnatifida (Wakame or Asian kelp) is a large brown seaweed and an Invasive Non-Indigenous Species (INIS) that could out-compete native UK kelp species (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012; Brodie et al., 2014; Hieser et al., 2014; Arnold et al., 2016; Epstein & Smale, 2017; Epstein & Smale, 2018; Kraan, 2017; Epstein et al., 2019a,b; Tidbury, 2020).  Undaria pinnatifida originates from Japan but is established currently on the coastlines of New Zealand, Australia, Northern France, Spain, Italy, the UK, Portugal, Belgium, Holland, Argentina, Mexico, and the USA (De Leij et al., 2017).  Undaria pinnatifida was first recorded in the UK in the Hamble Estuary in 1994 (Macleod et al., 2016).  It has since proliferated along UK coastlines.  One year after its discovery at the Queen Anne Battery marina, Plymouth, it had become a major fouling plant on pontoons (Minchin & Nunn, 2014).  Although initially restricted to artificial habitats, such as marinas and ports, it is now widespread in natural habitats in several areas, including Plymouth Sound.

Undaria pinnatifida seems to settle better on artificial substrata (e.g. floats, marinas, or piers) than on natural rocky shores among local kelps (Vaz-Pinto et al., 2014).  It is found predominantly in low intertidal to shallow subtidal habitats (Epstein et al., 2019b) and is significantly more abundant on artificial substrata compared to natural rocky substrata (Heiser et al., 2014; Epstein & Smale, 2018).  James (2017) suggested that Undaria pinnatifida could out-compete native species on artificial substrata (such as marinas and wharf structures).  In Plymouth, UK, De Leij et al. (2017) found that natural habitats with dense native macroalgal canopies, such as Laminaria hyperborea, Laminaria ochroleuca, Laminaria digitata, and Saccharina latissima had more resistance to Undaria pinnatifida invasion than disturbed or sparse canopies, due to limited space and light availability for Undaria pinnatifida recruits.  However, the dense canopies did not always prevent the invasion of Undaria pinnatifida as sporophytes were still recorded within dense Laminaria canopies, so canopy disturbance was not always required (De Leij et al., 2017; Epstein & Smale, 2018).

Undaria pinnatifida species behaves as a winter annual and recruitment occurs in winter followed by rapid growth through spring, maturity, and then senescence through summer, with only the microscopic life stages persisting through autumn.  It exhibits multiple dispersal strategies, such as short-range spore dispersal, and long-range dispersal as whole drift plants or fragments.  Undaria pinnatifida has spread rapidly across the UK and Europe, resulting in community-wide responses and impacts (Vaz-Pinto et al., 2014; Epstein & Smale, 2017).  Its impacts are complex and context-specific, depending on space, time, and taxa present in the introduced location (Epstein & Smale, 2017; Teagle et al., 2017; Tidbury, 2020).

Undaria pinnatifida has a wide physiological niche meaning it can occur in both coastal and estuarine environments showing tolerance for varying salinities, turbidity, and siltation (Heiser et al., 2014; Epstein & Smale, 2018). Undaria pinnatifida can inhibit a broad range of habitats including – reefs; coastal brackish/saline lagoons; large shallow inlets and bays; estuaries; estuarine rocky habitats; natural or near-natural estuary; coastal lagoons; and tidal rivers, estuaries, mudflats, sandflats and lagoons (James, 2017).   Undaria pinnatifida prefers sites sheltered with low wave exposure and weak tidal streams (Heiser et al., 2014; Epstein & Smale, 2018).  In natural habitats, Undaria pinnatifida was not recorded if the wave fetch was greater than 642 km but increased in abundance and cover in very sheltered sites (Epstein & Smale, 2018).

In Plymouth Sound (UK), Epstein et al. (2019b) found that within its depth range (+1 to –4 m), Undaria pinnatifida co-existed with seven species of canopy-forming brown macroalgae, including Saccharina latissima.  However, they reported that Undaria pinnatifida biomass was negatively related to Saccharina latissima in both intertidal and subtidal habitats. This was only statistically significant in subtidal habitats, which suggested that there was some competition between the two species (Epstein et al., 2019b). Heiser et al. (2014) surveyed 17 sites within Plymouth Sound, UK and found that Saccharina latissima was significantly more abundant at sites with Undaria pinnatifida with ca 5 Saccharina latissima individuals present per m², compared to ca 0.5 Saccharina latissima individuals per m² present at sites without Undaria pinnatifida.

Undaria pinnatifida has been reported to both co-exist with and out-compete Saccharina latissima (Farrell & Fletcher, 2006; Heiser et al., 2014; Epstein et al., 2019b). For example, in Torquay Marina, UK, Farrell & Fletcher (2006) completed a canopy removal experiment between 1996-2002. They reported that Saccharina latissima decreased in both control and treatment plots from ca 3 plants per 0.45 m² in 1996 to ca 1 plant per 0.45 m² in 1997 and had disappeared completely from pontoons by 2002. This coincided with a significant increase in Undaria pinnatifida from zero plants per 0.45 m² in 1996 to ca 6 plants per 0.45 m² in 1997.  However, there was a slight decrease in Undaria pinnatifida in both control and treatment plots between 1997 and 1998.  By 2002, Undaria pinnatifida had recovered at control and treatment plots to ca 4-6 plants per 0.45 m² whereas Saccharina latissima had not.

Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of 70°C (Wotton et al., 2004).  However, numerous other eradication attempts have failed and, as noted by Fletcher & Farrell (1998), once established Undaria pinnatifida resists most attempts at long-term removal.

The proliferation of Undaria pinnatifida and competition with native species may cause a reduction in local biodiversity (Valentine & Johnson, 2003; Vaz-Pinto et al., 2014; Arnold et al., 2016; Teagle, 2017; Tidbury, 2020).  A shift towards Undaria pinnatifida dominated beds could result in diminished epibiotic assemblages and lower local biodiversity compared with assemblages associated with native perennial kelp species, such as Laminaria spp. and Saccharina latissima (Arnold et al., 2016; Teagle et al., 2017).  In Plymouth, UK, Arnold et al. (2016) found that Undaria pinnatifida supported less than half the number of taxa and had no unique epibionts compared to Laminaria ochroleuca and Saccharina latissima (Arnold et al., 2016).

Sensitivity assessment. The above evidence suggests that both Sargassum muticum and Undaria pinnatifida can both compete with and co-exist with Saccharina latissima, depending on local conditions.  For example, Undaria pinnatifida can out-compete Saccharina latissima in artificial habitats, such as in Torquay Marina, but within natural habitats, it can co-exist with native kelp species within its depth range (-1 to 4 m), as shown in Plymouth Sound, UK.  Similarly, Sargassum muticum out-competed Saccharina latissima in theLimfjorden but coexisted in the Dorn in Strangford Lough.

This Saccharina latissima dominated biotope (SS.SMp.KSwSS.SlatMxVS) is found at variable depth (0-20 m JNCC, 2015) and variable salinity with moderately strong to weak tidal streams and wave exposed to very sheltered conditions.  The evidence above suggests that Undaria prefers sheltered conditions, with low tidal flow, in the shallow subtidal and sublittoral fringe (ca +1 to 4 m in depth), while Sargassum also prefers wave sheltered conditions and shallow water (ca 1 to 4 m depth).  Therefore, Undaria pinnatifida and Sargassum muticum are only likely to threaten the most shallow (e.g. 0-5 m) and wave sheltered examples of this biotope, where suitable had substrata are available.  They may either co-exist with or out-compete Saccharina latissima, resulting in a potentially significant (25-75%) reduction in the abundance or extent of the native kelp and a possible decrease in the diversity of other macroalgae.  Therefore, resistance is assessed as ‘Low’ for shallow, wave sheltered examples of the biotope, i.e. above 5 m in depth, while it is probably ‘Not relevant’ to examples below 5 m.  Recovery after invasion by Sargassum or Undaria, although rapid, would require direct intervention (removal) so that resilience is assessed as ‘Very low’.  Hence, the sensitivity of shallow, sheltered, examples of the biotope is assessed as ‘High’.  Overall, confidence is assessed as ‘Low’ due to evidence of variation and site-specific nature of competition between native kelps, Sargassum muticum, and Undaria pinnatifida.

Low
Low
NR
NR
Help
Very Low
High
High
High
Help
High
Low
Low
Low
Help
Introduction of microbial pathogens [Show more]

Introduction of microbial pathogens

Benchmark. The introduction of relevant microbial pathogens or metazoan disease vectors to an area where they are currently not present (e.g. Martelia refringens and Bonamia, Avian influenza virus, viral Haemorrhagic Septicaemia virus). Further detail

Evidence

Saccharina latissima may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark spots to heavy deformations and completely crippled thalli (Peters & Scaffelke, 1996). Infection can reduce growth rates of host algae.

Psammechinus miliaris is susceptible to 'Bald-sea-urchin disease', which causes lesions, loss of spines, tube feet, pedicellariae, destruction of the upper layer of skeletal tissue and death (Maes et al., 1986). It is thought to be caused by the bacteria Vibrio anguillarum and Aeromonas salmonicida. This disease has been recorded from Psammechinus miliaris from the French Atlantic coast. Although associated with mass mortalities of Strongylocentrotus franciscanus in California and Paracentrotus lividus in the French Mediterranean there is no evidence of mass mortalities of Psammechinus miliaris associated with this disease around Britain and Ireland.

Brown & Seed (1977) reported a low level of infestation (ca 2%) of Modiolus modiolus with pea crabs Pinnotheres sp. in Port Erin, Isle of Man and Strangford Lough. Comely (1978) reported that ca 20% of older specimens, in an ageing population, were damaged or shells malformed by the boring sponge Cliona celata. Infestation by the boring sponge reduces the strength of the shell and may render the population more intolerant of physical disturbance (see above). However, little other information concerning the effects of parasites or disease on the condition of horse mussels was found.

Shumway (1990) reviewed the effects of algal blooms on shellfish and reported that a bloom of Gonyaulax tamarensis (Protogonyaulax) was highly toxic to Modiolus modiolus. Shumway (1990) also noted that both Mytilus spp. and Modiolus spp. accumulated paralytic shellfish poisoning (PSP) toxins faster than most other species of shellfish, e.g. horse mussels retained Gonyaulax tamarensis toxins for up to 60 days (depending on the initial level of contamination). Landsberg (1996) also suggested that there was a correlation between the incidence of neoplasia or tumours in bivalves and out-breaks of paralytic shellfish poisoning in which bivalves accumulate toxins from algal blooms, although a direct causal effect required further research.

The parasites Martelia refringens or other Marteilia sp. can cause significant bivalve infections. Although these have been reported to infect Modiolus modiolus (Bower et al., 2004) no evidence was available to assess the scale of impact and therefore there is not enough evidence to assess sensitivity of Modiolus modiolus to this pressure

Sensitivity assessment. Evidence suggests that a number of characterizing species are susceptible to a number of disease or parasites that could result in loss of condition and possibly a proportion of the individual species populations. Therefore, resistance to the pressure is considered ‘Medium’, and resilience ‘High’. The sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘Low’.

Medium
Medium
High
Medium
Help
High
Low
NR
NR
Help
Low
Low
Low
Low
Help
Removal of target species [Show more]

Removal of target species

Benchmark. Removal of species targeted by fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

Evidence

Targeted removal of characterizing species SS.SMp.KSwSS.SlatMxVS would likely have a fundamental effect on the ecology. Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed, as is the case with Laminaria hyperborea (see Christie et al., 1998). As a consequence related literature on which to assess the “resistance” of Saccharina latissima to targeted harvesting is sparse. Psammechinus miliaris is targeted as a potential aquaculture species. When fed a nutritious diet in culture, the gonad biomass rapidly proliferates which can then be marketed as urchin “roe” (Kelly et al., 1998; 2000). However, a study of a littoral and sublittoral population, Kelly (2000) concluded that a wild fishery was not commercially viable because of the low gonad content of wild populations. While some extraction of Psammechinus miliaris may conceivably develop for roe-enhancement through feeding artificial or nutrient enriched diets (Dr Maeve Kelly pers comm.), this is currently not in practice within the UK.

Artisanal fisheries have targeted Modiolus modiolus as bait for the long-ling fishery (Jeffreys 1863; Wiborg 1946) and, more locally, for human consumption around the British Isles (Jeffreys 1863; Holt et al. 1998) and the Faroe Islands (Dinesen & Ockelmann 2005). However at the time of writing Modiolus modiolus is not directly targeted in the UK.

Sensitivity assessment. At the time of writing none of the characterizing species are commercially extracted from the seabed. If extracted in the future resistance would need to be re-assessed. This pressure has been assessed as ‘Not Relevant.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Removal of non-target species [Show more]

Removal of non-target species

Benchmark. Removal of features or incidental non-targeted catch (by-catch) through targeted fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

Evidence

Incidental removal of characterizing species from this biotope would likely have a fundamental effect on the ecology. Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed, as is the case with Laminaria hyperborea (see Christie et al., 1998). As a consequence related literature on which to assess the “resistance” of Saccharina latissima to incidental harvesting is sparse.

Psammechinus miliaris may suffer as a result of trawling or dredging for other benthic species. Species with fragile tests such as urchins have been reported to be particularly sensitive to damage from mobile fishing gear (see Jennings & Kaiser, 1998; Bergman & van Santbrink, 2000). Kaiser & Spencer (1994) reported a ca20 - 50% mortality in Psammechinus miliaris as a result of a single pass of an experimental 4m beam trawl. Similarly, sparse Modiolus modiolus may be removed by a passing mobile gear, or crushed by mobilized cobbles and pebbles.

Sensitivity assessment. For this assessment it has been assumed that incidental removal could result in removal of the characterizing species, depending on the footprint of the activity. i. Resistance has been assessed as ‘Low’, resilience as ‘Medium’ and sensitivity as ‘Medium’.

Low
High
High
High
Help
Medium
High
High
High
Help
Medium
High
High
High
Help

Bibliography

  1. Davenport J, Kjøsvik E. 1982. Observations on a Norwegian intertidal population of the horse mussel Modiolus modiolus (L.). Journal of Molluscan Studies 48: 370-1.

  2. Allain, J-Y. 1978. Age et croissance de Paracentrotus lividus (Lamarck) et de Psammechinus miliaris (Gmelin) des côtes nord de Bretagne (Echinoidea). Cahiers de Biologie Marine, 19, 11-21.

  3. Andersen, G.S., Steen, H., Christie, H., Fredriksen, S. & Moy, F.E., 2011. Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: implications for forest recovery. Journal of Marine Biology, 2011, Article ID 690375, 8 pages.

  4. Andrew, N.L. & Viejo, R.M., 1998. Ecological limits to the invasion of Sargassum muticum in northern Spain. Aquatic Botany, 60 (3), 251-263. DOI https://doi.org/10.1016/S0304-3770(97)00088-0

  5. Anestis, A., Pörtner, H.O., Lazou, A. & Michaelidis, B., 2008. Metabolic and molecular stress responses of sublittoral bearded horse mussel Modiolus barbatus to warming sea water: implications for vertical zonation. 211 (17), 2889-2898. DOI https://doi.org/10.1242/jeb.016782

  6. Anwar, N.A., Richardson, C.A. & Seed, R., 1990. Age determination, growth rate, and population structure of the horse mussel Modiolus modiolus. Journal of the Marine Biological Association of the United Kingdom, 70, 441-457.

  7. Arnold, M., Teagle, H., Brown, M.P. & Smale, D.A., 2016. The structure of biogenic habitat and epibiotic assemblages associated with the global invasive kelp Undaria pinnatifida in comparison to native macroalgae. Biological Invasions, 18 (3), 661-676. DOI https://doi.org/10.1007/s10530-015-1037-6

  8. Assis, J., Araújo, M.B. & Serrão, E.A., 2018. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 24 (1), e55-e66. DOI https://doi.org/10.1111/gcb.13818

  9. Bayne, B.L., Widdows, J. & Thompson, R.J., 1976. Physiological integrations. In Marine mussels: their ecology and physiology (ed. B.L. Bayne), pp. 261-299. Cambridge: Cambridge University Press. [International Biological Programme 10.]

  10. Bekkby, T. & Moy, F.E., 2011. Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuarine Coastal and Shelf Science, 95 (4), 477-483.

  11. Bergman, M.J.N. & Van Santbrink, J.W., 2000b. Fishing mortality of populations of megafauna in sandy sediments. In The effects of fishing on non-target species and habitats (ed. M.J. Kaiser & S.J de Groot), 49-68. Oxford: Blackwell Science.

  12. Beszczynska-Möller, A., & Dye, S.R., 2013. ICES Report on Ocean Climate 2012. In ICES Cooperative Research Report, vol. 321 pp. 73.

  13. Birkett, D.A., Maggs, C.A., Dring, M.J. & Boaden, P.J.S., 1998b. Infralittoral reef biotopes with kelp species: an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Natura 2000 report prepared by Scottish Association of Marine Science (SAMS) for the UK Marine SACs Project., Scottish Association for Marine Science. (UK Marine SACs Project, vol VI.), 174 pp. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/reefkelp.pdf

  14. Bolton, J.J. & Lüning, K.A.F., 1982. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Marine Biology, 66, 89-94.

  15. Bower, S.M., 1996. Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish: Bald-sea-urchin Disease. [On-line]. Fisheries and Oceans Canada. [cited 26/01/16]. Available from: http://www.dfo-mpo.gc.ca/science/aah-saa/diseases-maladies/bsudsu-eng.html

  16. Bower, S.M., 2004. Rickettsia-like and Chlamydia-like Organisms of Mussels. Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish. http://www.pac.dfo-mpo.gc.ca/science/species-especes/shellfish-coquillages/diseases-maladies/pages/rcomu-eng.htm

  17. Breeman, A.M., 1990. Expected Effects of Changing Seawater Temperatures on the Geographic Distribution of Seaweed Species. In Beukema, J.J., et al. (eds.). Expected Effects of Climatic Change on Marine Coastal Ecosystems, Dordrecht: Springer Netherlands, pp. 69-76. DOI: https://doi.org/10.1007/978-94-009-2003-3_9

  18. Britton-Simmons, K.H., 2004. Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Marine Ecology Progress Series, 277, 61-78. DOI https://doi.org/10.3354/meps277061

  19. Brodie J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C. & Anderson, K.M., 2014. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4 (13), 2787-2798. DOI  https://doi.org/10.1002/ece3.1105

  20. Brown, R.A. & R. Seed., 1976. Modiolus modiolus (L.) - an autoecological study. In Proceedings of the 11th European Symposium on Marine Biology, Galway, 5-11 October, 1976. Biology of Benthic Organisms (ed. B.F. Keegan, P.O. Ceidigh & Boaden, P.J.S.), pp. 93-100.

  21. Brown, R.A., 1984. Geographical variation in the reproduction of the horse mussel, Modiolus modiolus (Mollusca: Bivalvia). Journal of the Marine Biological Association of the United Kingdom, 64, 751-770.

  22. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

  23. Burrows, M.T., Smale, D., O’Connor, N., Rein, H.V. & Moore, P., 2014. Marine Strategy Framework Directive Indicators for UK Kelp Habitats Part 1: Developing proposals for potential indicators. Joint Nature Conservation Comittee,  Peterborough. Report no. 525.

  24. Cabioch, L., Dauvin, J.C. & Gentil, F., 1978. Preliminary observations on pollution of the sea bed and disturbance of sub-littoral communities in northern Brittany by oil from the Amoco Cadiz. Marine Pollution Bulletin, 9, 303-307.

  25. Casas, G., Scrosati, R. & Piriz, M.L., 2004. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biological Invasions, 6 (4), 411-416.

  26. Cazenave, A. & Nerem, R.S., 2004. Present-day sea-level change: Observations and causes. Reviews of Geophysics, 42 (3). DOI https://doi.org/10.1029/2003rg000139

  27. Christie, H., Fredriksen, S. & Rinde, E., 1998. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia, 375/376, 49-58.

  28. Church, J.A. & White, N.J., 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33 (1). DOI https://doi.org/10.1029/2005gl024826

  29. Church, J.A., White, N.J., Coleman, R., Lambeck, K. & Mitrovica, J.X., 2004. Estimates of the Regional Distribution of Sea Level Rise over the 1950–2000 Period. Journal of Climate, 17 (13), 2609-2625.

  30. Cole, S., Codling, I.D., Parr, W. & Zabel, T., 1999. Guidelines for managing water quality impacts within UK European Marine sites. Natura 2000 report prepared for the UK Marine SACs Project. 441 pp., Swindon: Water Research Council on behalf of EN, SNH, CCW, JNCC, SAMS and EHS. [UK Marine SACs Project.]. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/water_quality.pdf

  31. Comely, C.A., 1978. Modiolus modiolus (L.) from the Scottish West coast. I. Biology. Ophelia, 17, 167-193.

  32. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. ISBN 1 861 07561 8. In JNCC (2015), The Marine Habitat Classification for Britain and Ireland Version 15.03. [2019-07-24]. Joint Nature Conservation Committee, Peterborough. Available from https://mhc.jncc.gov.uk/

  33. Connor, D.W., Dalkin, M.J., Hill, T.O., Holt, R.H.F. & Sanderson, W.G., 1997a. Marine biotope classification for Britain and Ireland. Vol. 2. Sublittoral biotopes. Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06., Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06.

  34. Conolly N.J. & Drew, E.A., 1985. Physiology of Laminaria. III. Effect of a coastal eutrophication on seasonal patterns of growth and tissue composition in Laminaria digitata and L. saccharina. Marine Ecology, Pubblicazioni della Stazione Zoologica di Napoli I, 6, 181-195.

  35. Daan, R. & Mulder, M., 1996. On the short-term and long-term impact of drilling activities in the Dutch sector of the North Sea ICES Journal of Marine Science, 53, 1036-1044.

  36. Daniel, M.J. & Boyden, C.R., 1975. Diurnal variations in physico-chemical conditions within intertidal rockpools. Field Studies, 4, 161-176.

  37. Dauvin, J.C., Bellan, G., Bellan-Santini, D., Castric, A., Francour, P., Gentil, F., Girard, A., Gofas, S., Mahe, C., Noel, P., & Reviers, B. de., 1994. Typologie des ZNIEFF-Mer. Liste des parametres et des biocoenoses des cotes francaises metropolitaines. 2nd ed. Secretariat Faune-Flore, Museum National d'Histoire Naturelle, Paris (Collection Patrimoines Naturels, Serie Patrimoine Ecologique, No. 12). Coll. Patrimoines Naturels, vol. 12, Secretariat Faune-Flore, Paris.

  38. Davies, C.E. & Moss, D., 1998. European Union Nature Information System (EUNIS) Habitat Classification. Report to European Topic Centre on Nature Conservation from the Institute of Terrestrial Ecology, Monks Wood, Cambridgeshire. [Final draft with further revisions to marine habitats.], Brussels: European Environment Agency.

  39. Dayton, P.K., Tegner, M.J., Parnell, P.E. & Edwards, P.B., 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecological Monographs, 62, 421-445.

  40. De Bettignies, T., de Bettignies, F., Bartsch, I., Bekkby, T., Boiffin, A., Casado de Amezúa, P., Christie, H., Edwards, H., Fournier, N., García, A., Gauthier, L., Gillham, K., Halling, C., Harrald, M., Hennicke, J., Hernández, S., Kilnäs, M., Martinez, B., Mieszkowska, N., Moore, P., Moy, F., Mueller, M., Norderhaug, K.M., Ó Cadhla, O., Parry, M., Ramsay, K., Robertson, M., Russel, T., Serrão, E., Smale, D., Sousa Pinto, I., Steen, H., Street, M., Walday, M., Werner, T. & La Rivière, M., 2021. Background Document for Kelp Forests. OSPAR Commission, London, OSPAR 788/2021, 66 pp. Available from: https://www.ospar.org/documents?v=46796

  41. De Leij, R., Epstein, G., Brown, M.P. & Smale, D.A., 2017. The influence of native macroalgal canopies on the distribution and abundance of the non-native kelp Undaria pinnatifida in natural reef habitats. Marine Biology, 164 (7). DOI https://doi.org/10.1007/s00227-017-3183-0

  42. De Schweinitz, E.H. & Lutz, R.A., 1976. Larval development of the northern Horse mussel, Modiolus modiolus (L.) including a comparison with the larvae of Mytilus edulis L. as an aid in planktonic identification. Biological Bulletin, Marine Biological Laboratory, Woods Hole, 150, 348-360.

  43. Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D. & Tett, P., 2008. Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science, 79 (3), 429-439.

  44. Dieck, T.I., 1992. North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia, 31, 147-163.

  45. Dieck, T.I., 1993. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales: Phaeophyta) - ecological and biogeographical implications. Marine Ecology Progress Series, 100, 253-264.

  46. Dinesen, G.E., & Morton, B., 2014. Review of the functional morphology, biology and perturbation impacts on the boreal, habitat-forming horse mussel Modiolus modiolus (Bivalvia: Mytilidae: Modiolinae). Marine Biology Research, 10 (9), 845-870.

  47. Dinesen, G.E., Ockelmann, K.W. 2005. Spatial distribution and species distinction of Modiolus modiolus and syntopic Mytilidae (Bivalvia) in Faroese waters (NE Atlantic). BIOFAR Proceedings 2005. Annales Societas Scientarium Færoenses (Fróðskapparit), 41, 125-136.

  48. Dinnel, P.A., Pagano, G.G., & Oshido, P.S., 1988. A sea urchin test system for marine environmental monitoring. In Echinoderm Biology. Proceedings of the Sixth International Echinoderm Conference, Victoria, 23-28 August 1987, (R.D. Burke, P.V. Mladenov, P. Lambert, Parsley, R.L. ed.), pp 611-619. Rotterdam: A.A. Balkema.

  49. Dupont, S., Ortega-Martínez, O. & Thorndyke, M., 2010. Impact of near-future ocean acidification on echinoderms. Ecotoxicology, 19 (3), 449-462. DOI https://doi.org/10.1007/s10646-010-0463-6

  50. Edwards, A., 1980. Ecological studies of the kelp Laminaria hyperborea and its associated fauna in south-west Ireland. Ophelia, 9, 47-60.

  51. Elmhirst, R., 1922. Notes on the breeding and growth of marine animals in the Clyde Sea area. Report of the Scottish Marine Biological Association, 19-43.

  52. Elner, R.W. & Vadas, R.L., 1990. Inference in ecology: the sea urchin phenomenon in the northwest Atlantic. American Naturalist, 136, 108-125.

  53. Engelen, A.H., Serebryakova, A., Ang, P., Britton-Simmons, K., Mineur, F., Pedersen, M. F., & Toth, G., 2015. Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanography and Marine Biology: An Annual Review, 53, 81-126.

  54. Epstein, G. & Smale, D.A., 2017. Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecology and Evolution, 7 (20), 8624-8642. DOI https://doi.org/10.1002/ece3.3430

  55. Epstein, G. & Smale, D.A., 2018. Environmental and ecological factors influencing the spillover of the non-native kelp, Undaria pinnatifida, from marinas into natural rocky reef communities. Biological Invasions, 20 (4), 1049-1072. DOI https://doi.org/10.1007/s10530-017-1610-2

  56. Epstein, G., Foggo, A. & Smale, D.A., 2019a. Inconspicuous impacts: Widespread marine invader causes subtle but significant changes in native macroalgal assemblages. Ecosphere, 10 (7). DOI https://doi.org/10.1002/ecs2.2814

  57. Epstein, G., Hawkins, S.J. & Smale, D.A., 2019b. Identifying niche and fitness dissimilarities in invaded marine macroalgal canopies within the context of contemporary coexistence theory. Scientific Reports, 9. DOI https://doi.org/10.1038/s41598-019-45388-5

  58. Erwin, D.G., Picton, B.E., Connor, D.W., Howson, C.M., Gilleece, P. & Bogues, M.J., 1990. Inshore Marine Life of Northern Ireland. Report of a survey carried out by the diving team of the Botany and Zoology Department of the Ulster Museum in fulfilment of a contract with Conservation Branch of the Department of the Environment (N.I.)., Ulster Museum, Belfast: HMSO.

  59. Farrell, P. & Fletcher, R., 2006. An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). Journal of Experimental Marine Biology and Ecology, 334 (2), 236-243.

  60. Fletcher, R. & Farrell, P., 1998. Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgolander Meeresuntersuchungen, 52 (3-4), 259-275.

  61. Fletcher, R.L. & Manfredi, C., 1995. The occurrence of Undaria pinnatifida (Phyaeophyceae, Laminariales) on the South Coast of England. Botanica Marina, 38 (4), 355-358.

  62. Fletcher, R.L., 1996. The occurrence of 'green tides' - a review. In Marine Benthic Vegetation. Recent changes and the Effects of Eutrophication (ed. W. Schramm & P.H. Nienhuis). Berlin Heidelberg: Springer-Verlag. [Ecological Studies, vol. 123].

  63. Fredriksen, S., Sjøtun, K., Lein, T.E. & Rueness, J., 1995. Spore dispersal in Laminaria hyperborea (Laminariales, Phaeophyceae). Sarsia, 80 (1), 47-53.

  64. Frieder, C., Nam, S., Martz, T. & Levin, L., 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9 (10), 3917-3930.

  65. Frölicher, T.L., Fischer, E.M. & Gruber, N., 2018. Marine heatwaves under global warming. Nature, 560 (7718), 360-364. DOI https://doi.org/10.1038/s41586-018-0383-9

  66. Garrard, S.L., Gambi, M.C., Scipione, M.B., Patti, F.P., Lorenti, M., Zupo, V., Paterson, D.M. & Buia, M.C., 2014. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. Journal of Experimental Marine Biology and Ecology, 461, 31-38. DOI https://doi.org/10.1016/j.jembe.2014.07.011

  67. Gerard, V.A. & Du Bois, K.R., 1988. Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Marine Biology, 97, 575-580.

  68. Gerard, V.A. & Mann, K.H., 1979. Growth and production of Laminaria longicruris ( Phaeophyta) populations exposed to different intensities of water movement 1. Journal of Phycology, 15 (1), 33-41.

  69. Gezelius, G., 1962. Adaptation of the sea urchin Psammechinus miliaris to different salinities. Zoologiska Bidrag fran Uppsala, 35, 329-337.

  70. Gommez, J.L.C. & Miguez-Rodriguez, L.J., 1999. Effects of oil pollution on skeleton and tissues of Echinus esculentus L. 1758 (Echinodermata, Echinoidea) in a population of A Coruna Bay, Galicia, Spain. In Echinoderm Research 1998. Proceedings of the Fifth European Conference on Echinoderms, Milan, 7-12 September 1998, (ed. M.D.C. Carnevali & F. Bonasoro) pp. 439-447. Rotterdam: A.A. Balkema.

  71. Gordillo, F.J.L., Aguilera, J., Wiencke, C. & Jiménez, C., 2015. Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. Journal of Plant Physiology, 173, 41-50. DOI https://doi.org/10.1016/j.jplph.2014.09.008

  72. Gorman, D., Bajjouk, T., Populus, J., Vasquez, M. & Ehrhold, A., 2013. Modeling kelp forest distribution and biomass along temperate rocky coastlines. Marine Biology, 160 (2), 309-325.

  73. Hammer, L., 1972. Anaerobiosis in marine algae and marine phanerograms. In Proceedings of the Seventh International Seaweed Symposium, Sapporo, Japan, August 8-12, 1971 (ed. K. Nisizawa, S. Arasaki, Chihara, M., Hirose, H., Nakamura V., Tsuchiya, Y.), pp. 414-419. Tokyo: Tokyo University Press.

  74. Handå, A., Forbord, S., Wang, X., Broch, O.J., Dahle, S.W., Storseth, T.R., Reitan, K.I., Olsen, Y. & Skjermo, J., 2013. Seasonal and depth-dependent growth of cultivated kelp (Saccharina latissima) in close proximity to salmon (Salmo salar) aquaculture in Norway. Aquaculture, 414, 191-201.

  75. Harkin, E., 1981. Fluctuations in epiphyte biomass following Laminaria hyperborea canopy removal. In Proceedings of the Xth International Seaweed Symposium, Gø teborg, 11-15 August 1980 (ed. T. Levring), pp.303-308. Berlin: Walter de Gruyter.

  76. Hawkins, S.J. & Harkin, E., 1985. Preliminary canopy removal experiments in algal dominated communities low on the shore and in the shallow subtidal on the Isle of Man. Botanica Marina, 28, 223-30.

  77. Hayward, P.J. 1988. Animals on seaweed. Richmond, Surrey: Richmond Publishing Co. Ltd. [Naturalists Handbooks 9].

  78. Heiser, S., Hall-Spencer, J.M. & Hiscock, K., 2014. Assessing the extent of establishment of Undaria pinnatifida in Plymouth Sound Special Area of Conservation, UK. Marine Biodiversity Records, 7, e93.

  79. Henderson, J.T., 1929. Lethal temperatures of Lamellibranchiata. Contributions to Canadian Biology and Fisheries, 4, 395-412.

  80. Hiscock, K. & Mitchell, R., 1980. The Description and Classification of Sublittoral Epibenthic Ecosystems. In The Shore Environment, Vol. 2, Ecosystems, (ed. J.H. Price, D.E.G. Irvine, & W.F. Farnham), 323-370. London and New York: Academic Press. [Systematics Association Special Volume no. 17(b)].

  81. Hiscock, K., Southward, A., Tittley, I. & Hawkins, S., 2004. Effects of changing temperature on benthic marine life in Britain and Ireland. Aquatic Conservation: Marine and Freshwater Ecosystems, 14 (4), 333-362.

  82. Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. Countryside Council for Wales, Bangor, Contract Science Report, no. 65.

  83. Holt, T.J., Rees, E.I., Hawkins, S.J. & Seed, R., 1998. Biogenic reefs (Volume IX). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project), 174 pp. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/biogreef.pdf

  84. Huthnance, J., 2010. Temperature and salinity, in: Charting the Progress 2: Ocean processes feeder report, section 3.2. (eds. Buckley, P., et al.): UKMMAS, Defra, London.

  85. Iñiguez, C., Carmona, R., Lorenzo, M.R., Niell, F.X., Wiencke, C. & Gordillo, F.J.L., 2016. Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula. 163 (12), 248. DOI https://doi.org/10.1007/s00227-016-3024-6

  86. Jasim, A.K.N. & Brand, A.R., 1989. Observations on the reproduction of Modiolus modiolus in the Isle of Man. Journal of the Marine Biological Association of the United Kingdom, 69, 373-385.

  87. Jasim, A.K.N., 1986. Some ecological aspects of Modiolus modiolus (L.) populations off the south-east of the Isle of Man. , Ph.D. thesis, University of Liverpool.

  88. Jeffreys, J.G., 1863. British conchology, or an account of the mollusca which now inhabit the British Isles and surrounding seas, vol. 1-5. London: John van Voorst.

  89. Jennings, S. & Kaiser, M.J., 1998. The effects of fishing on marine ecosystems. Advances in Marine Biology, 34, 201-352.

  90. JNCC (Joint Nature Conservation Committee), 2022.  The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/

  91. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

  92. Johnston, E.L. & Roberts, D.A., 2009. Contaminants reduce the richness and evenness of marine communities: a review and meta-analysis. Environmental Pollution, 157 (6), 1745-1752.

  93. Jones, C.G., Lawton, J.H. & Shackak, M., 1994. Organisms as ecosystem engineers. Oikos, 69, 373-386.

  94. Jones, D.J., 1971. Ecological studies on macro-invertebrate communities associated with polluted kelp forest in the North Sea. Helgolander Wissenschaftliche Meersuntersuchungen, 22, 417-431.

  95. Jones, L.A., Hiscock, K. & Connor, D.W., 2000. Marine habitat reviews. A summary of ecological requirements and sensitivity characteristics for the conservation and management of marine SACs. Joint Nature Conservation Committee, Peterborough. (UK Marine SACs Project report.). Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/marine-habitats-review.pdf

  96. Jones, N.S. & Kain, J.M., 1967. Subtidal algal recolonisation following removal of Echinus. Helgolander Wissenschaftliche Meeresuntersuchungen, 15, 460-466.

  97. Kain, J.M., 1964. Aspects of the biology of Laminaria hyperborea III. Survival and growth of gametophytes. Journal of the Marine Biological Association of the United Kingdom, 44 (2), 415-433.

  98. Kain, J.M. & Svendsen, P., 1969. A note on the behaviour of Patina pellucida in Britain and Norway. Sarsia, 38, 25-30.

  99. Kain, J.M., 1971a. Synopsis of biological data on Laminaria hyperborea. FAO Fisheries Synopsis, no. 87.

  100. Kain, J.M., 1979. A view of the genus Laminaria. Oceanography and Marine Biology: an Annual Review, 17, 101-161.

  101. Kain, J.M., 1987. Photoperiod and temperature as triggers in the seasonality of Delesseria sanguinea. Helgolander Meeresuntersuchungen, 41, 355-370.

  102. Kain, J.M., & Norton, T.A., 1990. Marine Ecology. In Biology of the Red Algae, (ed. K.M. Cole & Sheath, R.G.). Cambridge: Cambridge University Press.

  103. Kain, J.M., Drew, E.A. & Jupp, B.P., 1975. Light and the ecology of Laminaria hyperborea II. In Proceedings of the Sixteenth Symposium of the British Ecological Society, 26-28 March 1974. Light as an Ecological Factor: II (ed. G.C. Evans, R. Bainbridge & O. Rackham), pp. 63-92. Oxford: Blackwell Scientific Publications.

  104. Kaiser, M.J. & Spencer, B.E., 1994. Fish scavenging behaviour in recently trawled areas. Marine Ecology Progress Series, 112 (1-2), 41-49.

  105. Karsten, U., 2007. Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycological Research, 55 (4), 257-262.

  106. Kelly, M.S., 2001. Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. Journal of Experimental Marine Biology and Ecology, 266, 67-80.

  107. Kelly, M.S., 2001. Environmental parameters controlling gametogenesis in the echinoid Psammechinus miliaris. Journal of Experimental Marine Biology and Ecology, 266, 67-80.

  108. Kelly, M.S., Brodie, C.C., & McKenzie, J.D., 1998. Somatic and gonadal growth of the sea urchin Psammechinus miliaris (Gmelin) maintained in polyculture with the Atlantic salmon. Journal of Shellfish Research, 17, 1557-1562.

  109. Kinne, O., 1977. International Helgoland Symposium "Ecosystem research": summary, conclusions and closing. Helgoländer Wissenschaftliche Meeresuntersuchungen, 30(1-4), 709-727.

  110. Kitching, J., 1941. Studies in sublittoral ecology III. Laminaria forest on the west coast of Scotland; a study of zonation in relation to wave action and illumination. The Biological Bulletin, 80 (3), 324-337

  111. Koch, M., Bowes, G., Ross, C. & Zhang, X.-H., 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19 (1), 103-132. DOI https://doi.org/10.1111/j.1365-2486.2012.02791.x

  112. Kraan, S., 2017. Undaria marching on; late arrival in the Republic of Ireland. Journal of Applied Phycology, 29 (2), 1107-1114. DOI https://doi.org/10.1007/s10811-016-0985-2

  113. Kregting, L., Blight, A., Elsäßer, B. & Savidge, G., 2013. The influence of water motion on the growth rate of the kelp Laminaria hyperborea. Journal of Experimental Marine Biology and Ecology, 448, 337-345.

  114. Kroeker, K.J., Micheli, F., Gambi, M.C. & Martz, T.R., 2011. Divergent ecosystem responses within a benthic marine community to ocean acidification. Proceedings of the National Academy of Sciences, 108 (35), 14515. DOI https://doi.org/10.1073/pnas.1107789108

  115. Kruuk, H., Wansink, D. & Moorhouse, A., 1990. Feeding patches and diving success of otters, Lutra lutra, in Shetland. Oikos, 57, 68-72.

  116. Kurihara, H., 2008. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 373, 275-284. DOI https://doi.org/10.3354/meps07802

  117. Lüning, K., 1979. Growth strategy of three Laminaria species (Phaeophyceae) inhabiting different depth zones in the sublittoral region of Hegloland (North Sea). Marine Ecological Progress Series, 1, 195-207.

  118. Landsberg, J.H., 1996. Neoplasia and biotoxins in bivalves: is there a connection? Journal of Shellfish Research, 15, 203-230.

  119. Lang, C. & Mann, K., 1976. Changes in sea urchin populations after the destruction of kelp beds. Marine Biology, 36 (4), 321-326.

  120. Lein, T.E., Sjøtun, K. & Wakili, S., 1991. Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia, 76 (3), 187-193. DOI https://doi.org/10.1080/00364827.1991.10413474

  121. Li, Y., Zhang, H., Tang, C., Zou, T. & Jiang, D., 2016. Influence of Rising Sea Level on Tidal Dynamics in the Bohai Sea. 74 (SI), 22-31. DOI https://doi.org/10.2112/si74-003.1

  122. Lindahl, P.E. & Runnström, J., 1929. Variation und Ökologie von Psammechinus miliaris (Gmelin). Acta Zoologica, 10, 401-484.

  123. Lobban, C.S. & Harrison, P.J., 1997. Seaweed ecology and physiology. Cambridge: Cambridge University Press.

  124. Lüning, K., 1990. Seaweeds: their environment, biogeography, and ecophysiology: John Wiley & Sons.

  125. Lüning, K., 1980. Critical levels of light and temperature regulating the gametogenesis of three laminaria species (Phaeophyceae). Journal of Phycology, 16, 1-15.

  126. Müller, R., Laepple, T., Bartsch, I. & Wiencke, C., 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina, 52 (6), 617-638.

  127. Macleod, A., Cottier-Cook, E., Hughes, D. & Allen, C., 2016. Investigating the impacts of marine invasive non-native species. Natural England Commissioned Report NECR223, Natural England, 58 pp. Available from: https://pureadmin.uhi.ac.uk/ws/portalfiles/portal/3729569/NECR223_edition_1.pdf

  128. Maes, P., Jangoux, M., & Fenaux, L., 1986. La maladie de l''oursin-chauve': Ultrastructure des lésions et charactérisation de leur pigmentation. Annales de l'Institut Océanographique. Nouvelle série, 62, 37-45.

  129. Magorrian, B.H., Service, M., & Clarke, W., 1995. An acoustic bottom classification of Strangford Lough, Northern Ireland. Journal of the Marine Biological Association of the United Kingdom, 75, 987-992.

  130. Mair, J.M., Moore, C.G., Kingston, P.F. & Harries, D.B. , 2000. A review of the status, ecology and conservation of horse mussel Modiouls modiolus beds in Scotland. Scottish Natural Heritage Commissioned Report.   F99PA08.

  131. Mann, K.H., 1982. Kelp, sea urchins, and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970-1980. Netherlands Journal of Sea Research, 16, 414-423.

  132. Miles, H., Widdicombe, S., Spicer, J.I. & Hall-Spencer, J., 2007. Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Marine Pollution Bulletin, 54 (1), 89-96. DOI https://doi.org/10.1016/j.marpolbul.2006.09.021

  133. Miller III, H.L., Neale, P.J. & Dunton, K.H., 2009. Biological weighting functions for UV inhibtion of photosynthesis in the kelp Laminaria hyperborea (Phaeophyceae) 1. Journal of Phycology, 45 (3), 571-584.

  134. Minchin, D. & Nunn, J., 2014. The invasive brown alga Undaria pinnatifida (Harvey) Suringar, 1873 (Laminariales: Alariaceae), spreads northwards in Europe. Bioinvasions Records, 3 (2), 57-63. DOI http://dx.doi.org/10.3391/bir.2014.3.2.01

  135. Moore, P.G., 1973a. The kelp fauna of north east Britain I. Function of the physical environment. Journal of Experimental Marine Biology and Ecology, 13, 97-125.

  136. Moore, P.G., 1973b. The kelp fauna of north east Britain. II. Multivariate classification: turbidity as an ecological factor. Journal of Experimental Marine Biology and Ecology, 13, 127-163.

  137. Moore, P.G., 1978. Turbidity and kelp holdfast Amphipoda. I. Wales and S.W. England. Journal of Experimental Marine Biology and Ecology, 32, 53-96.

  138. Moore, P.G., 1985. Levels of heterogeneity and the amphipod fauna of kelp holdfasts. In The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc. (ed. P.G. Moore & R. Seed), 274-289. London: Hodder & Stoughton Ltd.

  139. Morris, S. & Taylor, A.C. 1983. Diurnal and seasonal variations in physico-chemical conditions within intertidal rock pools. Estuarine, Coastal and Shelf Science, 17, 339-355.

  140. Mortensen, T.H., 1927. Handbook of the echinoderms of the British Isles. London: Humphrey Milford, Oxford University Press.

  141. Moy, F., Alve, E., Bogen, J., Christie, H., Green, N., Helland, A., Steen, H., Skarbøvik, E. & Stålnacke, P., 2006. Sugar Kelp Project: Status Report No 1. SFT Report TA-2193/2006, NIVA Report 5265 (in Norwegian, with English Abstract), 36 pp.

  142. Moy, F.E. & Christie, H., 2012. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Marine Biology Research, 8 (4), 309-321.

  143. Navarro, J.M. & Thompson, R.J., 1996. Physiological energetics of the horse mussel Modiolus modiolus in a cold ocean environment. Marine Ecology Progress Series, 138, 135-148.

  144. NBN, 2015. National Biodiversity Network 2015(20/05/2015). https://data.nbn.org.uk/

  145. Nepper-Davidsen, J., Andersen, D.T. & Pedersen, M.F., 2019. Exposure to simulated heatwave scenarios causes long-term reductions in performance in Saccharina latissima. Marine Ecology Progress Series, 630, 25-39
  146. Newton, L.C. & McKenzie, J.D., 1995. Echinoderms and oil pollution: a potential stress assay using bacterial symbionts. Marine Pollution Bulletin, 31, 453-456.

  147. Nichols, D., 1981. The Cornish Sea-urchin Fishery. Cornish Studies, 9, 5-18.

  148. Norderhaug, K., 2004. Use of red algae as hosts by kelp-associated amphipods. Marine Biology, 144 (2), 225-230.

  149. Norderhaug, K.M. & Christie, H.C., 2009. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology Research, 5 (6), 515-528.

  150. Norderhaug, K.M., Christie, H. & Fredriksen, S., 2007. Is habitat size an important factor for faunal abundances on kelp (Laminaria hyperborea)? Journal of Sea Research, 58 (2), 120-124.

  151. Nordheim, van, H., Andersen, O.N. & Thissen, J., 1996. Red lists of Biotopes, Flora and Fauna of the Trilateral Wadden Sea area, 1995. Helgolander Meeresuntersuchungen, 50 (Suppl.), 1-136.

  152. Norton, T.A., 1992. Dispersal by macroalgae. British Phycological Journal, 27, 293-301.

  153. Norton, T.A., Hiscock, K. & Kitching, J.A., 1977. The Ecology of Lough Ine XX. The Laminaria forest at Carrigathorna. Journal of Ecology, 65, 919-941.

  154. Nunes, J., McCoy, S.J., Findlay, H.S., Hopkins, F.E., Kitidis, V., Queirós, A.M., Rayner, L. & Widdicombe, S., 2015. Two intertidal, non-calcifying macroalgae (Palmaria palmata and Saccharina latissima) show complex and variable responses to short-term CO2 acidification. ICES Journal of Marine Science, 73 (3), 887-896. DOI https://doi.org/10.1093/icesjms/fsv081

  155. Parke, M., 1948. Studies on British Laminariaceae. I. Growth in Laminaria saccharina (L.) Lamour. Journal of the Marine Biological Association of the United Kingdom, 27, 651-709.

  156. Pedersen, M., 2015. Temperature effects on the kelp Saccharina latissimaASLO,  Grenada, Spain,  pp.

  157. Pedersen, M.F., Nejrup, L.B., Fredriksen, S., Christie, H. & Norderhaug, K.M., 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Marine Ecology Progress Series, 451, 45-60.

  158. Penfold, R., Hughson, S., & Boyle, N., 1996. The potential for a sea urchin fishery in Shetland. http://www.nafc.ac.uk/publish/note5/note5.htm, 2000-04-14

  159. Peteiro, C. & Freire, O., 2013. Biomass yield and morphological features of the seaweed Saccharina latissima cultivated at two different sites in a coastal bay in the Atlantic coast of Spain. Journal of Applied Phycology, 25(1), 205-213.

  160. Peters, A.F. & Schaffelke, B., 1996. Streblonema (Ectocarpales, Phaeophyceae) infection in the kelp Laminaria saccharina in the western Baltic. Hydrobiologia, 326/327, 111-116.

  161. Philippart, C.J., Anadón, R., Danovaro, R., Dippner, J.W., Drinkwater, K.F., Hawkins, S.J., Oguz, T., O'Sullivan, G. & Reid, P.C., 2011. Impacts of climate change on European marine ecosystems: observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology, 400 (1), 52-69.

  162. Pickering, M.D., Wells, N.C., Horsburgh, K.J. & Green, J.A.M., 2012. The impact of future sea-level rise on the European Shelf tides. Continental Shelf Research, 35, 1-15. DOI https://doi.org/10.1016/j.csr.2011.11.011

  163. Pierce, S.K., 1970. The water balance of Modiolus (Mollusca: Bivalvia: Mytilidae): osmotic concentrations in changing salinities. Comparative Biochemistry and Physiology, 36, 521-533.

  164. Raffaelli, D.G.  & Hawkins, S.J., 1999. Intertidal Ecology 2nd edn.. London: Kluwer Academic Publishers.

  165. Read, K.R.H. & Cumming, K.B., 1967. Thermal tolerance of the bivalve molluscs Modiolus modiolus (L.), Mytilus edulis (L.) and Brachidontes demissus (Dillwyn). Comparative Biochemistry and Physiology, 22, 149-155.

  166. Read, P.A., Anderson, K.J., Matthews, J.E., Watson, P.G., Halliday, M.C. & Shiells, G.M., 1983. Effects of pollution on the benthos of the Firth of Forth. Marine Pollution Bulletin, 14, 12-16.

  167. Redmond, S. 2013. Effects of Increasing Temperature and Ocean Acidification on the Microstages of two Populations of Saccharina latissima in the Northwest Atlantic. Master of Science,  University of Connecticut.

  168. Richardson, C.A., Chensery, S.R.N. & Cook, J.M., 2001. Assessing the history of trace metal (Cu, Zn, Pb) contamination in the North Sea through laser ablation - ICP-MS of horse mussel Modiolus modiolus shells Marine Ecology Progress Series, 211, 157-167.

  169. Rinde, E. & Sjøtun, K., 2005. Demographic variation in the kelp Laminaria hyperborea along a latitudinal gradient. Marine Biology, 146 (6), 1051-1062.

  170. Rostron, D.M. & Bunker, F. St P.D., 1997. An assessment of sublittoral epibenthic communities and species following the Sea Empress oil spill. A report to the Countryside Council for Wales from Marine Seen & Sub-Sea Survey., Countryside Council for Wales, Bangor, CCW Sea Empress Contact Science, no. 177.

  171. Rowell, T.W., 1967. Some aspects of the ecology, growth and reproduction of the horse mussel Modiolus modiolus. , MSc Thesis. Queens' University, Ontario

  172. Schäfer, S. & Köhler, A., 2009. Gonadal lesions of female sea urchin (Psammechinus miliaris) after exposure to the polycyclic aromatic hydrocarbon phenanthrene. Marine environmental research, 68 (3), 128-136.

  173. Schiel, D.R. & Foster, M.S., 1986. The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology: an Annual Review, 24, 265-307.

  174. Schlieper, E., Kowalski, R. & Erman, P., 1958. Beitrag zur öklogisch-zellphysiologishen Charakterisierung des borealen Lamellibranchier Modiolus modiolus L. Kieler Meeresforsch, 14, 3-10.

  175. SeaTemperature, 2015. World Sea Temperatures. (15/10/2015). http://www.seatemperature.org/

  176. Seed, R. & Brown, R.A., 1977. A comparison of the reproductive cycles of Modiolus modiolus (L.), Cerastoderma (=Cardium) edule (L.), and Mytilus edulis L. in Strangford Lough, Northern Ireland. Oecologia, 30, 173-188.

  177. Seed, R. & Brown, R.A., 1978. Growth as a strategy for survival in two marine bivalves, Cerastoderma edule and Modiolus modiolus. Journal of Animal Ecology, 47, 283-292.

  178. Shumway, S.E., 1977. Effect of salinity fluctuations on the osmotic pressure and Na+, Ca2+ and Mg2+ ion concentrations in the hemolymph of bivalve molluscs. Marine Biology, 41, 153-177.

  179. Shumway, S.E., 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society, 21, 65-104.

  180. Sivertsen, K., 1997. Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2872-2887.

  181. Sjøtun, K., Christie, H. & Helge Fosså, J., 2006. The combined effect of canopy shading and sea urchin grazing on recruitment in kelp forest (Laminaria hyperborea). Marine Biology Research, 2 (1), 24-32.

  182. Sjøtun, K. & Schoschina, E.V., 2002. Gametophytic development of Laminaria spp. (Laminariales, Phaeophyta) at low temperatures. Phycologia, 41, 147-152.

  183. Sjøtun, K., Fredriksen, S., Lein, T.E., Runess, J. & Sivertsen, K., 1993. Population studies of Laminaria hyperborea from its northen range of distribution in Norway. Hydrobiologia, 260/261, 215-221.

  184. Smale, D.A., Burrows, M.T., Moore, P., O'Connor, N. & Hawkins, S.J., 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and evolution, 3 (11), 4016-4038.

  185. Smale, D.A., Wernberg, T., Yunnie, A.L. & Vance, T., 2014. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine ecology.

  186. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

  187. Somerfield, P.J. & Warwick, R.M., 1999. Appraisal of environmental impact and recovery using Laminaria holdfast faunas. Sea Empress, Environmental Evaluation Committee., Countryside Council for Wales, Bangor, CCW Sea Empress Contract Science, Report no. 321.

  188. Staehr, P.A. & Wernberg, T., 2009. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. Journal of Phycology, 45, 91-99.

  189. Staehr, P.A., Pedersen, M.F., Thomsen, M.S., Wernberg, T. & Krause-Jensen, D., 2000. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Marine Ecology Progress Series, 207, 79-88. DOI https://doi.org/10.3354/meps207079

  190. Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A. & Tegner, M.J., 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental conservation, 29 (04), 436-459.

  191. Steneck, R.S., Vavrinec, J. & Leland, A.V., 2004. Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems, 7 (4), 323-332.

  192. Strong, J.A. & Dring, M.J., 2011. Macroalgal competition and invasive success: testing competition in mixed canopies of Sargassum muticum and Saccharina latissima. Botanica Marina, 54 (3), 223-229.

  193. Suchanek, T.H., 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist, 33, 510-523. DOI https://doi.org/10.1093/icb/33.6.510

  194. Suckling, C.C., Clark, M.S., Beveridge, C., Brunner, L., Hughes, A.D., Harper, E.M., Cook, E.J., Davies, A.J. & Peck, L.S., 2014. Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses. Invertebrate Reproduction & Development, 58 (3), 161-175. DOI https://doi.org/10.1080/07924259.2013.875951

  195. Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A., 2017. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 81-98. DOI https://doi.org/10.1016/j.jembe.2017.01.017

  196. Theede, H., Ponat, A., Hiroki, K. & Schlieper, C., 1969. Studies on the resistance of marine bottom invertebrates to oxygen-deficiency and hydrogen sulphide. Marine Biology, 2, 325-337.

  197. Thompson, G.A. & Schiel, D.R., 2012. Resistance and facilitation by native algal communities in the invasion success of Undaria pinnatifida. Marine Ecology, Progress Series, 468, 95-105.

  198. Thompson, R.S. & Burrows, E.M., 1984. The toxicity of copper, zinc and mercury to the brown macroalga Laminaria saccharina. In Ecotoxicological testing for the marine environment (ed. G. Persoone, E. Jaspers, & C. Claus), Vol. 2, pp. 259-269. Ghent: Laboratory for biological research in aquatic pollution, State University of Ghent.

  199. Tidbury, H, 2020. Wakame (Undaria pinnatifida). GB Non-native Species Rapid Risk Assessment., 15 pp. Available from: http://www.nonnativespecies.org/index.cfm?pageid=143

  200. Tillin, H. & Tyler-Walters, H., 2014b. Assessing the sensitivity of subtidal sedimentary habitats to pressures associated with marine activities. Phase 2 Report – Literature review and sensitivity assessments for ecological groups for circalittoral and offshore Level 5 biotopes. JNCC Report No. 512B,  260 pp. Available from: www.marlin.ac.uk/publications

  201. Ursin, E., 1960. A quantitative investigation of the echinoderm fauna of the central North Sea. Meddelelser fra Danmark Fiskeri-og-Havundersogelser, 2 (24), pp. 204.

  202. Vadas, R.L. & Elner, R.W., 1992. Plant-animal interactions in the north-west Atlantic. In Plant-animal interactions in the marine benthos, (ed. D.M. John, S.J. Hawkins & J.H. Price), 33-60. Oxford: Clarendon Press. [Systematics Association Special Volume, no. 46].

  203. Vadas, R.L., Johnson, S. & Norton, T.A., 1992. Recruitment and mortality of early post-settlement stages of benthic algae. British Phycological Journal, 27, 331-351.

  204. Valentine, J. P. & Johnson, C. R., 2003. Establishment of the introduced kelp Undaria pinnatifida in Tasmania depends on disturbance to native algal assemblages. Journal of Experimental Marine Biology and Ecology, 295 (1), 63-90. DOI https://doi.org/10.1016/S0022-0981(03)00272-7

  205. Van den Hoek, C., 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biological Journal of the Linnean Society, 18, 81-144.

  206. Vaz-Pinto, F., Rodil, I.F., Mineur, F., Olabarria, C. & Arenas, F., 2014. Understanding biological invasions by seaweeds. In Pereira, L. & Neto, J.M. (eds.). Marine algae: biodiversity, taxonomy, environmental assessment and biotechnology. Boca Raton, Florida: CRC Press, pp. 140-177.

  207. Viejo, R.M., Arrontes, J. & Andrew, N.L., 1995. An Experimental Evaluation of the Effect of Wave Action on the Distribution of Sargassum muticum in Northern Spain. , 38 (1-6), 437-442. DOI https://doi.org/10.1515/botm.1995.38.1-6.437

  208. Vost, L.M., 1983. The influence of Echinus esculentus grazing on subtidal algal communities. British Phycological Journal, 18, 211.

  209. Waldbusser, G.G., Hales, B., Langdon, C.J., Haley, B.A., Schrader, P., Brunner, E.L., Gray, M.W., Miller, C.A. & Gimenez, I., 2015. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature Climate Change, 5 (3), 273-280. DOI https://doi.org/10.1038/nclimate2479

  210. Whittick, A., 1983. Spatial and temporal distributions of dominant epiphytes on the stipes of Laminaria hyperborea (Gunn.) Fosl. (Phaeophyta: Laminariales) in S.E. Scotland. Journal of Experimental Marine Biology and Ecology, 73, 1-10.

  211. Wiborg, F.K., 1946. Undersøkelser over oskellet (Modiolus modiolus (L.)). Fiskeridirektoratets Skrifter (ser. Havundsrsøkelser), 8, 85.

  212. Wildish, D. & Peer, D., 1983. Tidal current speed and production of benthic macrofauna in the lower Bay of Fundy. Canadian Journal of Fisheries and Aquatic Sciences, 40 (S1), s309-s321.

  213. Wildish, D.J. & Fader, G.B.J., 1998. Pelagic-benthic coupling in the Bay of Fundy. Hydrobiologia, 375/376, 369-380.

  214. Wildish, D.J. & Kristmanson, D.D., 1985. Control of suspension feeding bivalve production by current speed. Helgolander Meeresuntersuchungen, 39, 237-243.

  215. Wildish, D.J., Fader, G.B.J., Lawton, P. & MacDonald, A.J., 1998. The acoustic detection and characteristics of sublittoral bivalve reefs in the Bay of Fundy. Continental Shelf Research, 18, 105-113.

  216. Wotton, D.M., O'Brien, C., Stuart, M.D. & Fergus, D.J., 2004. Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Marine Pollution Bulletin, 49 (9), 844-849.

Citation

This review can be cited as:

Stamp, T.E., Garrard, S.L.,, Lloyd, K.A., & Mardle, M.J., 2022. Saccharina latissima with Psammechinus miliaris and/or Modiolus modiolus on variable salinity infralittoral sediment. In Tyler-Walters H. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 15-11-2024]. Available from: https://marlin.ac.uk/habitat/detail/1036

 Download PDF version


Last Updated: 22/06/2022