Saccharina latissima with foliose red seaweeds and ascidians on sheltered tide-swept infralittoral rock

Summary

UK and Ireland classification

Description

Sheltered, tide-swept rock in south-western Britain tends to be restricted to estuarine conditions, where variable salinity and increased turbidity have a significant effect on the biota. Due to the turbidity of the water, the infralittoral zone is restricted to very shallow depths. Unlike the tide-swept channels in sealochs, which support a mixed kelp canopy, the rock in these estuaries is characterized by Saccharina latissima alone, occurring in relatively low abundance (Frequent). The brown alga Desmarestia ligulata can occur in this biotope, though never dense, along with the non-native brown seaweed Sargassum muticum. Beneath the sparse kelp, cobbles and boulders, often surrounded by sediment, are encrusted by fauna and often a dense turf of red seaweed. The foliose red seaweeds associated with this biotope include Metacallophyllis laciniata, Nitophyllum punctatum, Kallymenia reniformis, Gracilaria gracilis, Gymnogongrus crenulatus, Hypoglossum hypoglossoides, Rhodophyllis divaricata, Chylocladia verticillata, Cryptopleura ramosa and Erythroglossum laciniatum as well as the filamentous Ceramium nodulosum and Pterothamnion plumula. Green seaweeds Ulva lactuca, Bryopsis plumosa and Cladophora spp. may be locally abundant. The dominating faunal species vary from site to site but include sponges such as Halichondria panicea, Esperiopsis fucorum, Dysidea fragilis and Hymeniacidon perleve as well as ascidians, particularly Dendrodoa grossularia and Morchellium argus, which can cover the rocks. Also present is the anthozoan Anemonia viridis, the barnacle Balanus crenatus and the tube-building polychaete Spirobranchus triqueter. The hydroid Plumularia setacea can cover rocks and seaweed fronds Of the range of solitary ascidians found in the north-west, only Ascidiella aspersa tends also to be present in these south-western inlets. There is also a general absence of echinoderms. Where there is vertical rock present, it tends to support more fauna, including barnacles Balanus crenatus, the ascidians Clavelina lepadiformis and Botryllus schlosseri and sometines the featherstar Antedon bifida. Where soft rock allows, such as the limestone in Plymouth Sound, rock-boring organisms such as Polydora sp. may be locally abundant. Sheltered, tide-swept rock is generally restricted to the narrows or tidal rapids of marine inlets. The clear tide-swept waters of Scottish sealochs are significantly different to the marine inlets of south-west Britain. This biotope deals with the latter. (Information from Connor et al., 2004; JNCC, 2105).

Depth range

0-5 m

Additional information

-

Listed By

Sensitivity reviewHow is sensitivity assessed?

Sensitivity characteristics of the habitat and relevant characteristic species

IR.MIR.KT.SlatT is typically restricted to estuarine environments, in which strong tidal streams, variable salinity and high turbidity influence the community. Beneath a sparse Saccharina latissima (syn. Laminaria saccharina) canopy is a community of encrusting fauna and a dense turf of red seaweeds. Ascidians can also be a dominant component of the understorey, notably Dendrodoa grossularia and Morchellium argus which can cover rock surfaces.

In undertaking this assessment of sensitivity, account is taken of knowledge of the biology of all characterizing species in the biotope. At the time of writing limited evidence could be found for Morchellium argus. Hawkins & Harkin (1985) also demonstrated that if the canopy forming kelps are removed the understorey red seaweed communities are likely to perish. It was therefore deemed that the red seaweed community of IR.MIR.KT.SlatT was dependent on the presence of Saccharina latissima. Saccharina latissima and Dendrodoa grossularia are therefore the primary foci of research, however examples of important species groups are mentioned where appropriate.

Resilience and recovery rates of habitat

Saccharina lattisma is a perennial kelp characteristic of wave sheltered sites of the North East Atlantic, distributed from northern Portugal to Spitzbergen, Svalbard (Birkett et al., 1998; Conor et al., 2004; Bekby & Moy, 2011; Moy & Christie, 2012). Saccharina lattisma is capable of reaching maturity within 15-20 months (Sjøtun, 1993) and has a life expectancy of 2-4 years (Parke, 1948). Maximum growth has been recorded in late winter early spring, in late summer and autumn growth rates slow (Parke, 1948; Lüning, 1979; Birkett et al., 1998). The overall length of the sporophyte may not change during the growth season due to marginal (distal) erosion of the blade but extension growth of the blade has been measured at 1.1 cm/day, with total length addition of over 2.25m of tissue per year (Birkett et al., 1998). Saccharina latissima has a heteromorphic life strategy.  Vast numbers of zoospores are released from sori located centrally on the blade between autumn and winter. Zoospores settle onto rock substrata and develop into dioecious gametophytes (Kain, 1979) which, following fertilization, germinate into juvenile sporophytes from winter-spring.  Kelp zoospores are expected to have a large dispersal range, however zoospore density and the rate of successful fertilization decreases exponentially with distance from the parental source (Fredriksen et al., 1995) Hence, recruitment following disturbance can be influenced by the proximity of mature kelp beds producing viable zoospores to the disturbed area (Kain, 1979; Fredriksen et al., 1995).

The temperature isotherm of 19-20°C has been reported as limiting Saccharina lattisma growth (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990). However, Bolton & Lüning (1982) reported an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte. Growth was inhibited by 50-70% at 20°C and, all experimental specimens completely disintegrated after 7 days at 23°C.. In the field, Saccharina latissima has, however, shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C. Therefore, the response of Saccharina latissima to a change in temperatures is likely to be locally variable.

In 2002 a large scale decline of Saccharina latissima was discovered on the Norwegian coast (Moy & Christie, 2012). A subsequent large survey was undertaken between 2004-2009 of 660 sites covering 34,000 km of south and west Norway to assess the decline of Saccharina latissima abundance and distribution (Moy & Christie, 2012). The survey indicated an 83% reduction of Saccharina latissima forests across the south Norwegian region of Skagerrak.  The west Norwegian coast was less affected, but Saccharina latissima was either absent or very sparse at 38% of sites where it was expected to be abundant.  At all sites where Saccharina latissima was sparse a community of ephemeral macro-algae species was dominant and persisted throughout the study period (2004-2009).  Bekby & Moy (2011) modelled the regional decline which indicated a decline of 50.7% of Saccharina latissima from Skagerrak, Norway. Approximately 50% of Europe’s Saccharina latissima is found in Norway (Moy et al., 2006), therefore, despite large discrepancies between the two estimates of Saccharina latissima decline (50.7-83%) the results indicated a significant decline in Saccharina latissima across the region. Moy & Christie (2012) suggested the ephemeral filamentous macroalgae communities represented a stable state shift that had persisted throughout the study period (2004-2009).  Although no measurements were made, they suggested that the decline was due to low tidal movement and wave action in the worst affected areas combined with the impacts of dense human populations and increased land run-off multiple stressors such as eutrophication, increasing regional temperature, increased siltation and overfishing may also be acting synergistically to cause the observed habitat shift.

Other factors that are likely to influence the recovery of kelp biotopes is competitive interactions with the Invasive Non Indigenous Species (INIS) Undaria pinnatifida (Smale et al., 2013; Brodie et al., 2014; Heiser et al., 2014). Undaria pinnatifida has received a large amount of research attention as an INIS which could out-compete UK kelp habitats (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012, Brodie et al., 2014; Hieser et al., 2014). Undaria pinnatifida was first recorded in Plymouth Sound, UK in 2003 (NBN, 2015) subsequent surveys in 2011 have reported that Undaria pinnatifida is widespread throughout Plymouth Sound, colonizing rocky reef habitats. Where Undaria pinnatifida is present there was a significant decrease in the abundance of other Laminaria species, including Laminaria hyperborea (Heiser et al., 2014). In New Zealand, Thompson & Schiel (2012) observed that native fucoids could out-compete Undaria pinnatifida and redominate the substratum. However, Thompson & Schiel (2012) suggested the fucoid recovery of the substratum was partially due to an annual Undaria pinnatifida die back, which as noted by Heiser et al. (2014) did not occur in Plymouth sound, UK. It is unknown whether Undaria pinnatifida will out-compete native macro-algae in the UK. However from 2003-2011 Undaria pinnatifida had spread throughout Plymouth sound, UK, becoming a visually dominant species at some locations within summer months (Hieser et al., 2014). At the time of writing there is limited evidence available to assess the ecological impacts of Undaria pinnatifida on Laminaria hyperborea associated communities. Kelp biotopes are unlikely to fully recover until Undaria pinnatifida is fully removed from the habitat, which as stated above is unlikely to occur.

Dendrodoa grossularia is a small solitary ascidian (1.5-2 cm diameter (Miller, 1954)) which is distributed throughout the Arctic ocean to its southern range edge in the British Isles (WORMS, 2015). Dendrodoa grossularia is described as a social ascidian which can live as an individual or in large aggregations of 200+ individuals (MarLIN, 2015). Settlement occurs from April-June, by the following summer individuals reach their maximum size. Life expectancy is expected to be 18-24months. Sexual maturity is reached within the second year of growth and the release of gametes occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15°C and totally suppressed above ca. 20°C (Miller, 1954). Dendrodoa grossularia has been recorded as an abundant component of benthic fauna in Nottinghambukta, Svalbard where annual temperature can range from 3-5 °C (Beszczynska-Möller & Dye, 2013) and salinity between 6 and 20‰ (Ró?ycki & Gruszczy?ski, 1991). At the time of writing no information could be found on the upper temperature threshold of mature Dendrodoa grossularia or hyper salinity tolerances. Kenny & Rees (1994) observed Dendrodoa grossularia was able to recolonize rapidly following aggregate dredging. Following experimental dredging of a site off the English coast, which extracted an area of 1-2m wide and 0.3-0.5m deep, Dendrodoa grossularia was able to recolonize and attained 40% of pre-dredge abundance and 23% of biomass within 8 months. This recover rate combined with the ability of this species to reach sexual maturity within its first year suggests that Dendrodoa grossularia can recover from disturbance within 2 years.

Resilience assessment. Saccharina latissima and Dendrodoa grossularia have rapid recovery rates. Following clearance of Strongylocentrotus droebachiensis from ‘urchin Barrens’ Saccharina latissima was a rapid colonizer appearing after a few weeks. Furthermore Saccharina latissima can reach maturity within 15-20 months (Birkett et al., 1998). Dendrodoa grossularia can reach sexual maturity within 1 year of growth and can rapidly recover following severe habitat alteration. Resilience has therefore been assessed as ‘High’ for an impact where resistance is ‘Low’ or ‘Medium’, and ‘High’ for a localised pressure where resistance has been assessed as ‘None’.  For permanent or ongoing (long-term) pressures where recovery is not possible as the pressure is irreversible, resilience is assessed as ‘Very low’ by default. For widespread pressures, where resistance is assessed as ‘None’, resilience is assessed as ‘Very low’ due to the low dispersal potential of Saccharina latissima, which may prevent recruitment and recolonization after the pressure ceases.

Climate Change Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Global warming (extreme) [Show more]

Global warming (extreme)

Extreme emission scenario (by the end of this century 2081-2100) benchmark of:

  • A 5°C rise in SST and NBT (coastal to the shelf seas),

  • A 6°C rise in surface air temperature (in eulittoral and supralittoral habitats).

  • A 1°C rise in Deep-sea habitats (>200 m) off the continental shelf, and

  • A 5°C rise in surface air temperature in intertidal habitats exclusive to Scotland. Further detail.

Evidence

The distribution of seaweeds is climatically defined (Kain, 1979, Van Den Hoek, 1982, Breeman, 1990, Lüning, 1990). Northern boundaries are set by lethal winter temperatures or summer temperatures too low for growth and/or reproduction, whilst southern limits are set by high lethal summer temperatures or winter temperatures too high for induction of a crucial step in the life cycle (Breeman, 1990). Saccharina latissima is a polar to temperate macroalgae distributed from Greenland to the coast of Portugal, and in the NW Atlantic, and found as far south as New York State, USA. In the UK, sea surface temperatures are range between 6-19°C (Huthnance, 2010), and Saccharina latissima is in the middle of its biogeographic range. At its southern distribution in New York, temperatures can regularly reach ≥20°C for six weeks or more during summer months (Gerard & Du Bois, 1988).

Temperature is a major environmental factor controlling the development of the microscopic stages of Saccharina latissima, with major changes in survival, growth, and gametogenesis occurring within a few degrees of upper thermal limits (Redmond, 2013). The temperature isotherm of 19-20°C has been reported as limiting Saccharina latissima growth (Müller et al., 2009). Germination rates drop at 22°C, with surviving gametophytes smaller than those grown at lower temperatures (Redmond, 2013), and the maximum temperature for gametophytes survival is 23°C. Bolton & Lüning (1982) report an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte, with growth reducing by 50-70% at 20°C, and all experimental specimens disintegrating after 7 days at 23°C.

In the field, Saccharina latissima has shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima that were regularly exposed to ≥20°C tolerated these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C.

Saccharina latissima has suffered a dramatic decline in the Skagerrak region, Norway. In 2006  Andersen et al. (2011) transplanted Saccharina latissima into areas from where this species had been lost previously to determine whether the kelp could grow and mature. However, there was annual variation. High mortality occurred from August-November each year. In 2008, only 6 of the 17 original transplanted Saccharina latissima sporophytes survived (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region had regularly exceeded 20°C and so had the duration at which temperatures remain above 20°C. High sea temperatures have been linked to slow growth of Saccharina latissima which is likely due to a decrease in the photosynthetic ability of Saccharina latissima, and an increase in vulnerability to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011).

Assis et al. (2018) predicted that, under the highest emission scenario (RCP 8.5), the range of Saccharina latissima will move northwards, retreating from the coast of Portugal, France and the southwest coast of the UK. The authors projected that, under RCP 2.6, 13% suitable Laminaria hyperborea habitat would be lost from the Western English Channel, whilst under the RCP 8.5 emission, 87 % of suitable habitat was expected to be lost.

Dendrodoa grossularia gamete release occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15°C and totally suppressed above ca 20°C (Millar, 1954). Currently, no information could be found on the upper temperature threshold of mature Dendrodoa grossularia. However, Dendrodoa grossularia is at its southern range edge within the UK and, therefore, an increase in temperature that is outside the normal range for the UK is likely to cause mortality.

Many of the red algae species associated with the understory turf can tolerate warm water temperatures. Hypoglossum hypoglossoides is distributed from the northern islands of Scotland to the Caribbean, whilst Nitophyllum punctatum is distributed from Scotland to the Mediterranean (www.obis.org). The optimal temperature for Gracilaria gracilis growth was found to be 18°C, but high growth was recorded up to 25.5°C (Rebello et al., 1996).

Sensitivity Assessment. UK populations of Saccharina latissima are found in the middle of the species distribution and are known to be able to survive at higher temperatures than currently experienced around the UK. The ability to tolerate summer seawater temperatures of >20°C in populations at their southern geographic limit is thought to be a genetic adaptation (Gerard & Du Bois, 1988), and maybe crucial in the persistence of this species around the UK, as seawater temperatures rise.

With sea surface temperature around the UK of between 6-19°C (Huthnance, 2010), populations of Saccharina latissima and its understory turf may be able to adapt to cope with a gradual rise in ocean temperatures of 3°C (middle emission scenario) by the end of this century, leading to maximum summer high temperatures in the south of the UK of 22°C.  However, increasing temperatures are likely to lead to a decrease in growth and some mortality. The ascidian Dendrodoa grossularia is likely to be lost from this biotope as a result of rising temperatures under all three scenarios. Therefore, resistance is assessed as ‘Medium’, and resilience is assessed as ‘Very Low’, as the loss is likely to be a long-term decline, due to the long-term nature of ocean warming. Therefore, this biotope is assessed as ‘Medium’ sensitivity to ocean warming in the middle emission scenario.

For the high emission scenario and extreme scenario, whereby sea temperatures rise by 4-5°C to potential southern summer temperatures of 23-24°C by the end of this century both Dendrodoa grossularia and Sacharina latissima is likely to be lost from southern England, as gametophytes are not thought to be able to survive at temperatures ≥23°C. This assessment corresponds with the results of ecological niche modelling by Assis et al. (2018), who predicted that Saccharina latissima would be lost from the southwest coast of the UK, as a result of climate change.  As this biotope primarily occurs in the southwest of the UK, this means that much of this biotope will be lost. Therefore, resistance is assessed as ‘Low’, and resilience is assessed as ‘Very low’. This biotope is assessed as having ‘High’ sensitivity to ocean warming in the high emission and extreme scenarios.  

Low
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Global warming (high) [Show more]

Global warming (high)

High emission scenario (by the end of this century 2081-2100) benchmark of:

  • A 4°C rise in SST, NBT (coastal to the shelf seas) and surface air temperature (in eulittoral and supralittoral habitats).

  • A 1°C rise in Deep-sea habitats (>200 m) off the continental shelf, and

  • A 3°C rise in surface air temperature in intertidal habitats exclusive to Scotland. Further detail.

Evidence

The distribution of seaweeds is climatically defined (Kain, 1979, Van Den Hoek, 1982, Breeman, 1990, Lüning, 1990). Northern boundaries are set by lethal winter temperatures or summer temperatures too low for growth and/or reproduction, whilst southern limits are set by high lethal summer temperatures or winter temperatures too high for induction of a crucial step in the life cycle (Breeman, 1990). Saccharina latissima is a polar to temperate macroalgae distributed from Greenland to the coast of Portugal, and in the NW Atlantic, and found as far south as New York State, USA. In the UK, sea surface temperatures are range between 6-19°C (Huthnance, 2010), and Saccharina latissima is in the middle of its biogeographic range. At its southern distribution in New York, temperatures can regularly reach ≥20°C for six weeks or more during summer months (Gerard & Du Bois, 1988).

Temperature is a major environmental factor controlling the development of the microscopic stages of Saccharina latissima, with major changes in survival, growth, and gametogenesis occurring within a few degrees of upper thermal limits (Redmond, 2013). The temperature isotherm of 19-20°C has been reported as limiting Saccharina latissima growth (Müller et al., 2009). Germination rates drop at 22°C, with surviving gametophytes smaller than those grown at lower temperatures (Redmond, 2013), and the maximum temperature for gametophytes survival is 23°C. Bolton & Lüning (1982) report an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte, with growth reducing by 50-70% at 20°C, and all experimental specimens disintegrating after 7 days at 23°C.

In the field, Saccharina latissima has shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima that were regularly exposed to ≥20°C tolerated these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C.

Saccharina latissima has suffered a dramatic decline in the Skagerrak region, Norway. In 2006  Andersen et al. (2011) transplanted Saccharina latissima into areas from where this species had been lost previously to determine whether the kelp could grow and mature. However, there was annual variation. High mortality occurred from August-November each year. In 2008, only 6 of the 17 original transplanted Saccharina latissima sporophytes survived (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region had regularly exceeded 20°C and so had the duration at which temperatures remain above 20°C. High sea temperatures have been linked to slow growth of Saccharina latissima which is likely due to a decrease in the photosynthetic ability of Saccharina latissima, and an increase in vulnerability to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011).

Assis et al. (2018) predicted that, under the highest emission scenario (RCP 8.5), the range of Saccharina latissima will move northwards, retreating from the coast of Portugal, France and the southwest coast of the UK. The authors projected that, under RCP 2.6, 13% suitable Laminaria hyperborea habitat would be lost from the Western English Channel, whilst under the RCP 8.5 emission, 87 % of suitable habitat was expected to be lost.

Dendrodoa grossularia gamete release occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15°C and totally suppressed above ca 20°C (Millar, 1954). Currently, no information could be found on the upper temperature threshold of mature Dendrodoa grossularia. However, Dendrodoa grossularia is at its southern range edge within the UK and, therefore, an increase in temperature that is outside the normal range for the UK is likely to cause mortality.

Many of the red algae species associated with the understory turf can tolerate warm water temperatures. Hypoglossum hypoglossoides is distributed from the northern islands of Scotland to the Caribbean, whilst Nitophyllum punctatum is distributed from Scotland to the Mediterranean (www.obis.org). The optimal temperature for Gracilaria gracilis growth was found to be 18°C, but high growth was recorded up to 25.5°C (Rebello et al., 1996).

Sensitivity Assessment. UK populations of Saccharina latissima are found in the middle of the species distribution and are known to be able to survive at higher temperatures than currently experienced around the UK. The ability to tolerate summer seawater temperatures of >20°C in populations at their southern geographic limit is thought to be a genetic adaptation (Gerard & Du Bois, 1988), and maybe crucial in the persistence of this species around the UK, as seawater temperatures rise.

With sea surface temperature around the UK of between 6-19°C (Huthnance, 2010), populations of Saccharina latissima and its understory turf may be able to adapt to cope with a gradual rise in ocean temperatures of 3°C (middle emission scenario) by the end of this century, leading to maximum summer high temperatures in the south of the UK of 22°C.  However, increasing temperatures are likely to lead to a decrease in growth and some mortality. The ascidian Dendrodoa grossularia is likely to be lost from this biotope as a result of rising temperatures under all three scenarios. Therefore, resistance is assessed as ‘Medium’, and resilience is assessed as ‘Very Low’, as the loss is likely to be a long-term decline, due to the long-term nature of ocean warming. Therefore, this biotope is assessed as ‘Medium’ sensitivity to ocean warming in the middle emission scenario.

For the high emission scenario and extreme scenario, whereby sea temperatures rise by 4-5°C to potential southern summer temperatures of 23-24°C by the end of this century both Dendrodoa grossularia and Sacharina latissima is likely to be lost from southern England, as gametophytes are not thought to be able to survive at temperatures ≥23°C. This assessment corresponds with the results of ecological niche modelling by Assis et al. (2018), who predicted that Saccharina latissima would be lost from the southwest coast of the UK, as a result of climate change.  As this biotope primarily occurs in the southwest of the UK, this means that much of this biotope will be lost. Therefore, resistance is assessed as ‘Low’, and resilience is assessed as ‘Very low’. This biotope is assessed as having ‘High’ sensitivity to ocean warming in the high emission and extreme scenarios.  

Low
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Global warming (middle) [Show more]

Global warming (middle)

Middle emission scenario (by the end of this century 2081-2100) benchmark of:

  • A 3°C rise in SST, NBT (coastal to the shelf seas) and surface air temperature (in eulittoral and supralittoral habitats).

  • A 1°C rise in Deep-sea habitats (>200 m) off the continental shelf.

  • A 2°C rise in surface air temperature in intertidal habitats exclusive to Scotland. Further detail.

Evidence

The distribution of seaweeds is climatically defined (Kain, 1979, Van Den Hoek, 1982, Breeman, 1990, Lüning, 1990). Northern boundaries are set by lethal winter temperatures or summer temperatures too low for growth and/or reproduction, whilst southern limits are set by high lethal summer temperatures or winter temperatures too high for induction of a crucial step in the life cycle (Breeman, 1990). Saccharina latissima is a polar to temperate macroalgae distributed from Greenland to the coast of Portugal, and in the NW Atlantic, and found as far south as New York State, USA. In the UK, sea surface temperatures are range between 6-19°C (Huthnance, 2010), and Saccharina latissima is in the middle of its biogeographic range. At its southern distribution in New York, temperatures can regularly reach ≥20°C for six weeks or more during summer months (Gerard & Du Bois, 1988).

Temperature is a major environmental factor controlling the development of the microscopic stages of Saccharina latissima, with major changes in survival, growth, and gametogenesis occurring within a few degrees of upper thermal limits (Redmond, 2013). The temperature isotherm of 19-20°C has been reported as limiting Saccharina latissima growth (Müller et al., 2009). Germination rates drop at 22°C, with surviving gametophytes smaller than those grown at lower temperatures (Redmond, 2013), and the maximum temperature for gametophytes survival is 23°C. Bolton & Lüning (1982) report an experimental optimal temperature of 10-15°C for growth of the Saccharina latissima sporophyte, with growth reducing by 50-70% at 20°C, and all experimental specimens disintegrating after 7 days at 23°C.

In the field, Saccharina latissima has shown significant regional variation in its acclimation response to changing environmental conditions.  For example, Gerard & Dubois (1988) observed sporophytes of Saccharina latissima that were regularly exposed to ≥20°C tolerated these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C.

Saccharina latissima has suffered a dramatic decline in the Skagerrak region, Norway. In 2006  Andersen et al. (2011) transplanted Saccharina latissima into areas from where this species had been lost previously to determine whether the kelp could grow and mature. However, there was annual variation. High mortality occurred from August-November each year. In 2008, only 6 of the 17 original transplanted Saccharina latissima sporophytes survived (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region had regularly exceeded 20°C and so had the duration at which temperatures remain above 20°C. High sea temperatures have been linked to slow growth of Saccharina latissima which is likely due to a decrease in the photosynthetic ability of Saccharina latissima, and an increase in vulnerability to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011).

Assis et al. (2018) predicted that, under the highest emission scenario (RCP 8.5), the range of Saccharina latissima will move northwards, retreating from the coast of Portugal, France and the southwest coast of the UK. The authors projected that, under RCP 2.6, 13% suitable Laminaria hyperborea habitat would be lost from the Western English Channel, whilst under the RCP 8.5 emission, 87 % of suitable habitat was expected to be lost.

Dendrodoa grossularia gamete release occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15°C and totally suppressed above ca 20°C (Millar, 1954). Currently, no information could be found on the upper temperature threshold of mature Dendrodoa grossularia. However, Dendrodoa grossularia is at its southern range edge within the UK and, therefore, an increase in temperature that is outside the normal range for the UK is likely to cause mortality.

Many of the red algae species associated with the understory turf can tolerate warm water temperatures. Hypoglossum hypoglossoides is distributed from the northern islands of Scotland to the Caribbean, whilst Nitophyllum punctatum is distributed from Scotland to the Mediterranean (www.obis.org). The optimal temperature for Gracilaria gracilis growth was found to be 18°C, but high growth was recorded up to 25.5°C (Rebello et al., 1996).

Sensitivity Assessment. UK populations of Saccharina latissima are found in the middle of the species distribution and are known to be able to survive at higher temperatures than currently experienced around the UK. The ability to tolerate summer seawater temperatures of >20°C in populations at their southern geographic limit is thought to be a genetic adaptation (Gerard & Du Bois, 1988), and maybe crucial in the persistence of this species around the UK, as seawater temperatures rise.

With sea surface temperature around the UK of between 6-19°C (Huthnance, 2010), populations of Saccharina latissima and its understory turf may be able to adapt to cope with a gradual rise in ocean temperatures of 3°C (middle emission scenario) by the end of this century, leading to maximum summer high temperatures in the south of the UK of 22°C.  However, increasing temperatures are likely to lead to a decrease in growth and some mortality. The ascidian Dendrodoa grossularia is likely to be lost from this biotope as a result of rising temperatures under all three scenarios. Therefore, resistance is assessed as ‘Medium’, and resilience is assessed as ‘Very Low’, as the loss is likely to be a long-term decline, due to the long-term nature of ocean warming. Therefore, this biotope is assessed as ‘Medium’ sensitivity to ocean warming in the middle emission scenario.

For the high emission scenario and extreme scenario, whereby sea temperatures rise by 4-5°C to potential southern summer temperatures of 23-24°C by the end of this century both Dendrodoa grossularia and Sacharina latissima is likely to be lost from southern England, as gametophytes are not thought to be able to survive at temperatures ≥23°C. This assessment corresponds with the results of ecological niche modelling by Assis et al. (2018), who predicted that Saccharina latissima would be lost from the southwest coast of the UK, as a result of climate change.  As this biotope primarily occurs in the southwest of the UK, this means that much of this biotope will be lost. Therefore, resistance is assessed as ‘Low’, and resilience is assessed as ‘Very low’. This biotope is assessed as having ‘High’ sensitivity to ocean warming in the high emission and extreme scenarios.  

Medium
High
High
High
Help
Very Low
High
High
High
Help
Medium
Medium
High
High
Help
Marine heatwaves (high) [Show more]

Marine heatwaves (high)

High emission scenario benchmark: A marine heatwave occurring every two years, with a mean duration of 120 days, and a maximum intensity of 3.5°C. Further detail.

Evidence

Marine heatwaves due to increased air-sea heat flux are predicted to occur more frequently, last for longer and at increased intensity by the end of this century under both middle and high emission scenarios (Frölicher et al., 2018). Saccharina latissima has disappeared almost completely from the Danish estuary Limfjorden, where maximum surface temperatures in summer have increased by 0.7°C per decade over the last 40 years while the number of days with temperatures above 20°C has increased dramatically from 1-2 days year to >25 days year (Pedersen, 2015). Similarly, Saccharina latissima has been lost from the Skagerrak coast of Norway, which is thought to be due to an increase in summer temperatures, coupled with eutrophication (Moy & Christie, 2012).

Under experimental conditions, Nepper-Davidson et al. (2019) exposed a northern (Denmark) population of Saccharina latissima to a simulated three-week heatwave of three different intensities; 18, 21 and 24°C. When exposed to heatwaves of 18 and 21°C there was a decrease in photosynthesis and growth. When 24°C was simulated, 91% of sporophytes were dead within a week, and the fronds of the few survivors were disintegrating, so the experiment was terminated (Nepper-Davidsen et al., 2019). These results suggest that this species is unlikely to survive heatwaves of the length and magnitude predicted by the end of this century for both the middle and high emission scenarios.

Sensitivity Assessment. Under the middle emission scenario, if heatwaves occurred every three years, with a maximum intensity of 2°C for 80 days by the end of this century, this could lead to summer sea temperatures reaching up to 24°C in southern England. Dendrodoa grossularia is likely to be lost from this biotope as a result of rising temperatures and Saccharina latissima is likely to be impacted (see Global warming). A heatwave of this magnitude is likely to cause mass mortality of Saccharina latissima. Therefore, resistance has been assessed as ‘None’. As widespread mortality may lead to a lack of viable sporophytes for recruitment, resilience has been assessed as ‘Very low.’ This biotope is assessed as having ‘High’ sensitivity to marine heatwaves under the middle emission scenario.

Under the high emission scenario, if heatwaves occur every two years by the end of this century, reaching a maximum intensity of 3.5°C for 120 days, this could lead to the heatwave lasting the entire summer with temperatures reaching up to 26.5°C. Under this scenario, both Dendrodoa grossularia and Saccharina latissima are likely to be already lost from this biotope as a result of rising temperatures (see Global warming) although mortality of any surviving specimens would occur as a result of this projected heatwave. Therefore, resistance has been assessed as ‘None’. As widespread mortality may lead to a lack of viable sporophytes for recruitment, resilience has been assessed as ‘Very low.’ Therefore, this biotope is assessed as having ‘High’ sensitivity to marine heatwaves under the high emission scenario.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Marine heatwaves (middle) [Show more]

Marine heatwaves (middle)

Middle emission scenario benchmark:  A marine heatwave occurring every three years, with a mean duration of 80 days, with a maximum intensity of 2°C. Further detail.

Evidence

Marine heatwaves due to increased air-sea heat flux are predicted to occur more frequently, last for longer and at increased intensity by the end of this century under both middle and high emission scenarios (Frölicher et al., 2018). Saccharina latissima has disappeared almost completely from the Danish estuary Limfjorden, where maximum surface temperatures in summer have increased by 0.7°C per decade over the last 40 years while the number of days with temperatures above 20°C has increased dramatically from 1-2 days year to >25 days year (Pedersen, 2015). Similarly, Saccharina latissima has been lost from the Skagerrak coast of Norway, which is thought to be due to an increase in summer temperatures, coupled with eutrophication (Moy & Christie, 2012).

Under experimental conditions, Nepper-Davidson et al. (2019) exposed a northern (Denmark) population of Saccharina latissima to a simulated three-week heatwave of three different intensities; 18, 21 and 24°C. When exposed to heatwaves of 18 and 21°C there was a decrease in photosynthesis and growth. When 24°C was simulated, 91% of sporophytes were dead within a week, and the fronds of the few survivors were disintegrating, so the experiment was terminated (Nepper-Davidsen et al., 2019). These results suggest that this species is unlikely to survive heatwaves of the length and magnitude predicted by the end of this century for both the middle and high emission scenarios.

Sensitivity Assessment. Under the middle emission scenario, if heatwaves occurred every three years, with a maximum intensity of 2°C for 80 days by the end of this century, this could lead to summer sea temperatures reaching up to 24°C in southern England. Dendrodoa grossularia is likely to be lost from this biotope as a result of rising temperatures and Saccharina latissima is likely to be impacted (see Global warming). A heatwave of this magnitude is likely to cause mass mortality of Saccharina latissima. Therefore, resistance has been assessed as ‘None’. As widespread mortality may lead to a lack of viable sporophytes for recruitment, resilience has been assessed as ‘Very low.’ This biotope is assessed as having ‘High’ sensitivity to marine heatwaves under the middle emission scenario.

Under the high emission scenario, if heatwaves occur every two years by the end of this century, reaching a maximum intensity of 3.5°C for 120 days, this could lead to the heatwave lasting the entire summer with temperatures reaching up to 26.5°C. Under this scenario, both Dendrodoa grossularia and Saccharina latissima are likely to be already lost from this biotope as a result of rising temperatures (see Global warming) although mortality of any surviving specimens would occur as a result of this projected heatwave. Therefore, resistance has been assessed as ‘None’. As widespread mortality may lead to a lack of viable sporophytes for recruitment, resilience has been assessed as ‘Very low.’ Therefore, this biotope is assessed as having ‘High’ sensitivity to marine heatwaves under the high emission scenario.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Ocean acidification (high) [Show more]

Ocean acidification (high)

High emission scenario benchmark: a further decrease in pH of 0.35 (annual mean) and corresponding 120% increase in H+ ions , seasonal aragonite saturation of 20% of UK coastal waters and North Sea bottom waters, and the aragonite saturation horizon in the NE Atlantic, off the continental shelf, occurring at a depth of 400 m by the end of this century 2081-2100. Further detail 

Evidence

Increasing levels of CO2 in the atmosphere have led to the average pH of sea surface waters dropping from 8.25 in the 1700s to 8.14 in the 1990s (Jacobson, 2005), with it expected to drop by a further 0.35 units by the end of this century, dependent on emission scenario. Marine autotrophs will generally benefit from ocean acidification, through an increase in the availability of aqueous CO2 for photosynthesis (Koch et al., 2013). Most species of kelp appear to be undersaturated in respect to carbon dioxide, although they can generally utilise HCO3 and have external carbonic anhydrase for extracellular dehydration of HCO3 to CO2 (Koch et al., 2013).

Under experimental CO2 enrichment led at levels expected by the end of this century germination rates in Saccharina latissima were the same as control samples but gametophyte size increased, suggesting a benefit to juvenile stages of this species (Roleda et al., 2012). Nunes et al. (2015) found that experimental exposure of adult Saccharina latissima to enhanced CO2 led to an increase in net primary production, whilst Gordillo et al. (2015) found that enhanced CO2 led to increased photosynthesis and growth. In contrast, Iñiguez et al. (2016) found no increase in carbon fixation under elevated CO2 conditions. Whilst contrasting in findings, these studies show that ocean acidification will not negatively impact Saccharina latissima.

The impact of ocean acidification on Dendrodoa grossularia is not known, although ocean acidification is thought to generally be positive for tunicates, which have been classified as one of the winners of ocean acidification (Dupont & Thorndyke, 2009).

Sensitivity Assessment. Kelp forests live in a naturally variable pH habitat, with diel fluctuations of 0.3 - 0.45 pH units (Krause-Jensen et al., 2015, Britton et al., 2016), and boundary layer pH fluctuation of up to 0.8 units (Krause-Jensen et al., 2015). Neither the macroalga Saccharina latissima nor the tunicate Dendrodoa grossularia are expected to exhibit negative effects of ocean acidification at levels expected for the end of this century. Therefore, under both the middle and high emission scenario resistance is assessed as ‘High’, and resilience is assessed as ‘High’ leading to a score of ‘Not sensitive’.

High
Medium
Medium
Medium
Help
High
High
High
High
Help
Not sensitive
Medium
Medium
Medium
Help
Ocean acidification (middle) [Show more]

Ocean acidification (middle)

Middle emission scenario benchmark: a further decrease in pH of 0.15 (annual mean) and corresponding 35% increase in H+ ions with no coastal aragonite undersaturation and the aragonite saturation horizon in the NE Atlantic, off the continental shelf, at a depth of 800 m by the end of this century 2081-2100. Further detail.

Evidence

Increasing levels of CO2 in the atmosphere have led to the average pH of sea surface waters dropping from 8.25 in the 1700s to 8.14 in the 1990s (Jacobson, 2005), with it expected to drop by a further 0.35 units by the end of this century, dependent on emission scenario. Marine autotrophs will generally benefit from ocean acidification, through an increase in the availability of aqueous CO2 for photosynthesis (Koch et al., 2013). Most species of kelp appear to be undersaturated in respect to carbon dioxide, although they can generally utilise HCO3 and have external carbonic anhydrase for extracellular dehydration of HCO3 to CO2 (Koch et al., 2013).

Under experimental CO2 enrichment led at levels expected by the end of this century germination rates in Saccharina latissima were the same as control samples but gametophyte size increased, suggesting a benefit to juvenile stages of this species (Roleda et al., 2012). Nunes et al. (2015) found that experimental exposure of adult Saccharina latissima to enhanced CO2 led to an increase in net primary production, whilst Gordillo et al. (2015) found that enhanced CO2 led to increased photosynthesis and growth. In contrast, Iñiguez et al. (2016) found no increase in carbon fixation under elevated CO2 conditions. Whilst contrasting in findings, these studies show that ocean acidification will not negatively impact Saccharina latissima.

The impact of ocean acidification on Dendrodoa grossularia is not known, although ocean acidification is thought to generally be positive for tunicates, which have been classified as one of the winners of ocean acidification (Dupont & Thorndyke, 2009).

Sensitivity Assessment. Kelp forests live in a naturally variable pH habitat, with diel fluctuations of 0.3 - 0.45 pH units (Krause-Jensen et al., 2015, Britton et al., 2016), and boundary layer pH fluctuation of up to 0.8 units (Krause-Jensen et al., 2015). Neither the macroalga Saccharina latissima nor the tunicate Dendrodoa grossularia are expected to exhibit negative effects of ocean acidification at levels expected for the end of this century. Therefore, under both the middle and high emission scenario resistance is assessed as ‘High’, and resilience is assessed as ‘High’ leading to a score of ‘Not sensitive’.

High
Medium
Medium
Medium
Help
High
High
High
High
Help
Not sensitive
Medium
Medium
Medium
Help
Sea level rise (extreme) [Show more]

Sea level rise (extreme)

Extreme scenario benchmark: a 107 cm rise in average UK by the end of this century (2018-2100). Further detail.

Evidence

Sea-level rise is occurring through a combination of thermal expansion and ice melt.  Sea levels have risen 1-3 mm/yr. in the last century (Cazenave & Nerem, 2004, Church et al., 2004, Church & White, 2006). This biotope occurs in sheltered, infralittoral rock in estuaries primarily in the south-west of England, and is generally only found at shallow depths, due to the highly turbid nature of the water (JNCC, 2015).

Light availability and water turbidity are principle factors in determining kelp depth range (Birkett et al. 1998b), with laminarians being reported to be able to withstand light levels of up to 1% surface irradiance. In Maine, USA, Saccharina latissima is abundant at both turbid and deep sites where surface irradiance averages 2.5% surface irradiance, and have adapted to low-light conditions (Gerard, 1990).

This biotope occurs on tide-swept infralittoral rock. Understanding how sea-level rise will affect tidal energy is fraught with uncertainty, although evidence appears to suggest that any alterations will be non-linear (Pickering et al., 2012, Li et al., 2016). Modelling potential outcomes of sea-level rise on the tidal and residual currents in the Bohai Sea, China showed effects were site-dependent, with energy either increasing or decreasing (Li et al., 2016). Similarly, Pickering et al. (2012) found a similar pattern around the UK for tidal amplitude.

Sensitivity assessment. An increase in sea level height of 50, 70 and 107 cm could have severe repercussions for the extent of this biotope, which is already constrained to shallow waters through limits to light availability. This biotope may be able to expand its range and migrate landwards to compensate for sea-level rise, if not constrained by lack of tide-swept rock, or human-modified shorelines (IPCC, 2019). If landward migration is not possible, it is expected that depth distribution of this biotope will shrink substantially in response to a 50, 70 or 107 cm sea-level rise, without the possibility of recovery, due to the increased depth, leading to a reduction in light availability for photosynthesis. It is unknown how tidal energy will change, or what alterations this may lead to for this biotope. For the middle and high emission scenarios (50 and 70 cm rise) the resistance has been assessed as ‘Medium’ while resilience is assessed as ‘Very low’.  Therefore, sensitivity is assessed as ‘Medium’ sensitivity to sea-level rise predicted for the end of this century in these scenarios.

Under the extreme sea-level rise scenario of 107 cm, there is potential that more than 25% of the bed could be lost, dependent on depth distribution.  Therefore, resistance has been assessed as ‘Low’, and resilience as ‘Very low’, albeit with ‘Low’ confidence.  This biotope is assessed as having ‘High’ sensitivity under the extreme sea-level rise scenario predicted for the end of this century. 

Low
Low
NR
NR
Help
Very Low
High
High
High
Help
High
Low
Low
Low
Help
Sea level rise (high) [Show more]

Sea level rise (high)

High emission scenario benchmark: a 70 cm rise in average UK by the end of this century (2018-2100). Further detail.

Evidence

Sea-level rise is occurring through a combination of thermal expansion and ice melt.  Sea levels have risen 1-3 mm/yr. in the last century (Cazenave & Nerem, 2004, Church et al., 2004, Church & White, 2006). This biotope occurs in sheltered, infralittoral rock in estuaries primarily in the south-west of England, and is generally only found at shallow depths, due to the highly turbid nature of the water (JNCC, 2015).

Light availability and water turbidity are principle factors in determining kelp depth range (Birkett et al. 1998b), with laminarians being reported to be able to withstand light levels of up to 1% surface irradiance. In Maine, USA, Saccharina latissima is abundant at both turbid and deep sites where surface irradiance averages 2.5% surface irradiance, and have adapted to low-light conditions (Gerard, 1990).

This biotope occurs on tide-swept infralittoral rock. Understanding how sea-level rise will affect tidal energy is fraught with uncertainty, although evidence appears to suggest that any alterations will be non-linear (Pickering et al., 2012, Li et al., 2016). Modelling potential outcomes of sea-level rise on the tidal and residual currents in the Bohai Sea, China showed effects were site-dependent, with energy either increasing or decreasing (Li et al., 2016). Similarly, Pickering et al. (2012) found a similar pattern around the UK for tidal amplitude.

Sensitivity assessment. An increase in sea level height of 50, 70 and 107 cm could have severe repercussions for the extent of this biotope, which is already constrained to shallow waters through limits to light availability. This biotope may be able to expand its range and migrate landwards to compensate for sea-level rise, if not constrained by lack of tide-swept rock, or human-modified shorelines (IPCC, 2019). If landward migration is not possible, it is expected that depth distribution of this biotope will shrink substantially in response to a 50, 70 or 107 cm sea-level rise, without the possibility of recovery, due to the increased depth, leading to a reduction in light availability for photosynthesis. It is unknown how tidal energy will change, or what alterations this may lead to for this biotope. For the middle and high emission scenarios (50 and 70 cm rise) the resistance has been assessed as ‘Medium’ while resilience is assessed as ‘Very low’.  Therefore, sensitivity is assessed as ‘Medium’ sensitivity to sea-level rise predicted for the end of this century in these scenarios.

Under the extreme sea-level rise scenario of 107 cm, there is potential that more than 25% of the bed could be lost, dependent on depth distribution.  Therefore, resistance has been assessed as ‘Low’, and resilience as ‘Very low’, albeit with ‘Low’ confidence.  This biotope is assessed as having ‘High’ sensitivity under the extreme sea-level rise scenario predicted for the end of this century. 

Medium
Low
NR
NR
Help
Very Low
High
High
High
Help
Medium
Low
Low
Low
Help
Sea level rise (middle) [Show more]

Sea level rise (middle)

Middle emission scenario benchmark: a 50 cm rise in average UK sea-level rise by the end of this century (2081-2100). Further detail.

Evidence

Sea-level rise is occurring through a combination of thermal expansion and ice melt.  Sea levels have risen 1-3 mm/yr. in the last century (Cazenave & Nerem, 2004, Church et al., 2004, Church & White, 2006). This biotope occurs in sheltered, infralittoral rock in estuaries primarily in the south-west of England, and is generally only found at shallow depths, due to the highly turbid nature of the water (JNCC, 2015).

Light availability and water turbidity are principle factors in determining kelp depth range (Birkett et al. 1998b), with laminarians being reported to be able to withstand light levels of up to 1% surface irradiance. In Maine, USA, Saccharina latissima is abundant at both turbid and deep sites where surface irradiance averages 2.5% surface irradiance, and have adapted to low-light conditions (Gerard, 1990).

This biotope occurs on tide-swept infralittoral rock. Understanding how sea-level rise will affect tidal energy is fraught with uncertainty, although evidence appears to suggest that any alterations will be non-linear (Pickering et al., 2012, Li et al., 2016). Modelling potential outcomes of sea-level rise on the tidal and residual currents in the Bohai Sea, China showed effects were site-dependent, with energy either increasing or decreasing (Li et al., 2016). Similarly, Pickering et al. (2012) found a similar pattern around the UK for tidal amplitude.

Sensitivity assessment. An increase in sea level height of 50, 70 and 107 cm could have severe repercussions for the extent of this biotope, which is already constrained to shallow waters through limits to light availability. This biotope may be able to expand its range and migrate landwards to compensate for sea-level rise, if not constrained by lack of tide-swept rock, or human-modified shorelines (IPCC, 2019). If landward migration is not possible, it is expected that depth distribution of this biotope will shrink substantially in response to a 50, 70 or 107 cm sea-level rise, without the possibility of recovery, due to the increased depth, leading to a reduction in light availability for photosynthesis. It is unknown how tidal energy will change, or what alterations this may lead to for this biotope. For the middle and high emission scenarios (50 and 70 cm rise) the resistance has been assessed as ‘Medium’ while resilience is assessed as ‘Very low’.  Therefore, sensitivity is assessed as ‘Medium’ sensitivity to sea-level rise predicted for the end of this century in these scenarios.

Under the extreme sea-level rise scenario of 107 cm, there is potential that more than 25% of the bed could be lost, dependent on depth distribution.  Therefore, resistance has been assessed as ‘Low’, and resilience as ‘Very low’, albeit with ‘Low’ confidence.  This biotope is assessed as having ‘High’ sensitivity under the extreme sea-level rise scenario predicted for the end of this century. 

Medium
Low
NR
NR
Help
Very Low
High
High
High
Help
Medium
Low
Low
Low
Help

Hydrological Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Temperature increase (local) [Show more]

Temperature increase (local)

Benchmark. A 5°C increase in temperature for one month, or 2°C for one year. Further detail

Evidence

The temperature isotherm of 19-20°C has been reported as limiting Saccharina lattisma growth (Müller et al., 2009). Gametophytes can develop in ≤23°C (Lüning, 1990). Optimal temperature for Saccharina latissima sporophyte growth was 10-15°C (Bolton & Lüning, 1982), while  reported  growth was inhibited by 50-70% at 20°C and all experimental specimens completely disintegrated after 7 days at 23°C.  In the field, Saccharina latissima has however shown significant regional variation in its acclimation response to changing environmental conditions.  For example Gerard & Dubois (1988) found Saccharina latissima sporophytes which were regularly exposed to ≥20°C could tolerate these high temperatures, whereas sporophytes from other populations which rarely experience ≥17°C showed 100% mortality after 3 weeks of exposure to 20°C.  Therefore, the response Saccharina latissima to a change in temperatures is likely to be locally variable.

Andersen et al. (2011) transplanted Saccharina latissima in the Skagerrak region, Norway and from 2006-2009. There was annual variation however high mortality occurred from August-November within each year of the experiment. In 2008 of the original 17 sporophytes 6 survived from March-September (approx. 65% mortality rate). All surviving sporophytes were heavily fouled by epiphytic organisms (estimated cover of 80 & 100%). Between 1960 and 2009, sea surface temperatures in the region have regularly exceeded 20°C and so has the duration which temperatures remain above 20°C. High sea temperatures has been linked to slow growth of Saccharina latissima which is likely to decrease the photosynthetic ability of, and increase the vulnerability of Saccharina latissima to epiphytic loading, bacterial and viral attacks (Anderson et al., 2011). These factors combined with establishment of annual filamentous algae in Skagerrak, Norway are likely to prevent the establishment of self sustaining populations in the area (Anderson et al., 2011; Moy & Christie, 2012).

Dendrodoa grossularia gamete release occurs from spring-autumn, with peaks in early spring and another in late summer. Gamete release is reduced at temperatures above 15°C and totally suppressed above ca 20°C (Miller, 1954). At the time of writing no information could be found on the upper temperature threshold of mature Dendrodoa grossularia. However, Dendrodoa grossularia is at its southern range edge within the UK and therefore a dramatic increase in temperature that is outside the normal range for the UK may cause mortality.

IR.MIR.KT.SlatT is recorded exclusively within the south west UK (Connor et al., 2004), where temperature ranges from 8-16°C (Beszczynska-Möller & Dye, 2013).

Sensitivity assessment. A 2°C increase for one year may impair Saccharina latissima sporophyte growth but otherwise not affect the characterizing species. Saccharina latissima populations that are not acclimated to >20°C may incur mass mortality within 3 weeks of exposure. Therefore, an increase of 5°C combined with high summer temperatures may cause mass Saccharina latissima mortality. Resistance has been assessed as ‘None’, and resilience as ‘High’. Sensitivity has been assessed as ‘Medium’.

None
High
High
High
Help
High
High
High
High
Help
Medium
High
High
High
Help
Temperature decrease (local) [Show more]

Temperature decrease (local)

Benchmark. A 5°C decrease in temperature for one month, or 2°C for one year. Further detail

Evidence

Saccharina lattissima has a lower temperature threshold for sporophyte growth at 0°C (Lüning, 1990). Subtidal red algae can survive at temperatures between -2 °C and 18-23 °C (Lüning, 1990; Kain & Norton, 1990). Dendrodoa grossularia is has been recorded from Nottinghambukta, Svalbard where annual temperature can range from 3-5°C.

Sensitivity assessment. An acute or long-term decrease in temperature within the UK, at the benchmark level, is not likely to have a significant effect on IR.MIR.KT.SlatT. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not sensitive’.

High
High
High
High
Help
High
High
High
High
Help
Not sensitive
High
High
High
Help
Salinity increase (local) [Show more]

Salinity increase (local)

Benchmark. A increase in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

Evidence

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu.  Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. The affect of long-term salinity changes (>5 days) or salinity >60 PSU on Saccharina latissima’ photosynthetic ability was not tested. The hypersaline tolerance of Dendrodoa grossularia is unknown.

Sensitivity assessment. The evidence suggests that Saccharina latissima can tolerate short-term (<5 days) exposure to hypersaline conditions of ≥40‰. Resistance has been assessed as ‘High’, resilience as ‘High’. The sensitivity of this biotope to an increase in salinity has been assessed as ‘Not Sensitive’.

High
Low
NR
NR
Help
High
High
High
High
Help
Not sensitive
Low
NR
NR
Help
Salinity decrease (local) [Show more]

Salinity decrease (local)

Benchmark. A decrease in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

Evidence

Karsten (2007) tested the photosynthetic ability of Saccharina latissima under acute 2 and 5 day exposure to salinity treatments ranging from 5-60 psu. A control experiment was also carried at 34 psu. Saccharina latissima showed high photosynthetic ability at >80% of the control levels between 25-55 psu. Hyposaline treatment of 10-20 psu led to a gradual decline of photosynthetic ability. After 2 days at 5 psu Saccharina latissima showed a significant decline in photosynthetic ability at approx. 30% of control. After 5 days at 5 psu, Saccharina latissima specimens became bleached and showed signs of severe damage. The affect of long-term salinity changes (>5 days) or salinity >60 psu on Saccharina latissima’ photosynthetic ability was not tested. The experiment was conducted on Saccharina latissima from the Arctic, and the authors suggest that at extremely low water temperatures (1-5°C) macroalgae acclimation to rapid salinity changes could be slower than at temperate latitudes. It is therefore possible that resident Saccharina latissima of the UK maybe be able to acclimate to salinity changes more effectively and quicker.

Dendrodoa grossularia has been recorded as an abundant component of benthic fauna in Nottinghambukta, Svalbard where salinity can range from 6 and 20‰ (Różycki & Gruszczyński, 1991).

Sensitivity assessment. A decrease in one MNCR salinity scale from ‘Variable Salinity’ (30-40psu) to ‘Reduced Salinity’ (18-30 psu) may cause a decline in the photosynthetic ability of Saccharina latissima and hence growth. Dendrodoa grossularia abundance in Nottinghambukta, Svalbard where salinity is extremely low indicates it would be unaffected. Resistance has been assessed as ‘Low’ and resilience as ‘High’. Therefore, sensitivity of this biotope to a decrease in salinity has been assessed as ‘Low’.

Low
High
High
High
Help
High
High
Low
High
Help
Low
High
Low
High
Help
Water flow (tidal current) changes (local) [Show more]

Water flow (tidal current) changes (local)

Benchmark. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2 m/s for more than one year. Further detail

Evidence

Peteiro & Freire (2013) measured Saccharina latissima growth from 2 sites; the first had maximal water velocities of 0.3m/sec and the second 0.1m/sec. At site 1 Saccharina latissima had significantly larger biomass than at site 2 (16 kg/m to 12 kg/m respectively). Peteiro & Freire (2013) suggested that faster water velocities were beneficial to Saccharina latissima growth. However, Gerard & Mann (1979) found Saccharina latissima productivity is reduced in moderately strong tidal streams (≤1m/sec) when compared to weak tidal streams (<0.5m/sec).

Despite the results published in Gerard & Mann (1979) Saccharina latissima can characterize or be a dominant in the tide swept biotopes IR.MIR.KT.XKTX & IR.MIR.KT.SlatT, which have been recorded from very strong (>3m/sec) to moderately strong tidal streams (≤1m/sec) (Connor et al., 2004), indicating Saccharina latissima can tolerate greater tidal streams than 1m/sec.

Sensitivity assessment. IR.MIR.KT.SlatT is recorded predominantly from strong-moderately strong (0.5-3m/sec) tidal streams. Large scale changes tidal velocities (>1m/sec) may increase the predominance of tide swept biotopes (e.g. IR.MIR.KR.LhypT/X, IR.MIR.KT.XKTX or IR.MIR.KT.SlatT) and replace IR.MIR.KT.SlatT. However, the available evidence suggests that a change in flow velocities of between 0.1-0.2m/sec would have no significant effect on IR.MIR.KT.SlatT. Resistance has been assessed as ‘High’, resilience as ‘High’. Sensitivity has been assessed as ‘Not Sensitive’ at the benchmark level.

High
Medium
High
High
Help
High
High
High
High
Help
Not sensitive
Medium
High
High
Help
Emergence regime changes [Show more]

Emergence regime changes

Benchmark.  1) A change in the time covered or not covered by the sea for a period of ≥1 year or 2) an increase in relative sea level or decrease in high water level for ≥1 year. Further detail

Evidence

IR.MIR.KT.SlatT core records occur exclusively from 0-5m (Connor et al., 2004). An increase in emergence will result in an increased risk of desiccation and mortality of Saccharina latissima in shallow examples of the biotope. Removal of canopy forming kelps has also been shown to increase desiccation and mortality of the understorey macro-algae (Hawkins & Harkin, 1985). Several mobile species such as sea urchins and brittle stars are likely to move away. However, providing that suitable substrata are present, the biotope is likely to re-establish further down the shore within a similar emergence regime to that which existed previously.

Sensitivity assessment. Resilience has been assessed as ‘Low’. Resistance as ‘High’. The sensitivity of this biotope to a change in emergence is considered as ‘Low’.

Low
Low
NR
NR
Help
High
High
Low
High
Help
Low
Low
Low
Low
Help
Wave exposure changes (local) [Show more]

Wave exposure changes (local)

Benchmark. A change in near shore significant wave height of >3% but <5% for more than one year. Further detail

Evidence

Wave exposure is one of the principal defining features of kelp biotopes, and changes in wave exposure are likely to alter the relative abundance of the kelp species, grazing and understorey community, and hence, the biotope (Birkett et al., 2004). Saccharina latissima is rarely dominant at wave exposed sites, however if present, develops a short thick stipe and a short, narrow and tightly wrinkled blade (Birkett et al., 1998). Furthermore, IR.MIR.KT.SlatT is recorded from sheltered to extremely sheltered sites (Connor et al., 2004).

Sensitivity assessment. However a change in near shore significant wave height of 3-5% is unlikely to have any significant effect on IR.MIR.KT.SlatT. Resistance has been assessed as ‘High’, resilience as ‘High’ and sensitivity as ‘Not Sensitive’ at the benchmark level.

High
High
High
High
Help
High
High
High
High
Help
Not sensitive
High
High
High
Help

Chemical Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Transition elements & organo-metal contamination [Show more]

Transition elements & organo-metal contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Saccharina latissima sporophytes have a low intolerance to heavy metals, but the early life stages are more intolerant. The effects of copper, zinc and mercury on Saccharina latissima have been investigated by Thompson & Burrows (1984). They observed that the growth of sporophytes was significantly inhibited at 50 µg Cu /l, 1000 µg Zn/l and 50 µg Hg/l. Zoospores were found to be more intolerant and significant reductions in survival rates were observed at 25 µg Cu/l, 1000 µg Zn/l and 5 µg/l. Little is known about the effects of heavy metals on echinoderms. Bryan (1984) reported that early work had shown that echinoderm larvae were intolerant of heavy metals, e.g. the intolerance of larvae of Paracentrotus lividus to copper (Cu) had been used to develop a water quality assessment. Kinne (1984) reported developmental disturbances in Echinus esculentus exposed to waters containing 25 µg / l of copper (Cu). Sea-urchins, especially the eggs and larvae, are used for toxicity testing and environmental monitoring (reviewed by Dinnel et al. 1988). Taken together with the findings of Gomez & Miguez-Rodriguez (1999) above it is likely that echinoderms are intolerant of heavy metal contamination.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Hydrocarbon & PAH contamination [Show more]

Hydrocarbon & PAH contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

Saccharina latissima fronds, being predominantly subtidal, would not come into contact with freshly released oil but only to sinking emulsified oil and oil adsorbed onto particles (Birkett et al., 1998). The mucilaginous slime layer coating of laminarians may protect them from smothering by oil. Hydrocarbons in solution reduce photosynthesis and may be algicidal. However, Holt et al. (1995) reported that oil spills in the USA and from the 'Torrey Canyon' had little effect on kelp forests.

Dendrodoa grossularia does grow in the intertidal (Miller, 1954) and may therefore become smothered in the event of an oil spill, however at the time of writing there no evidence to support this.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Synthetic compound contamination [Show more]

Synthetic compound contamination

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed but evidence is presented where available.

O'Brian & Dixon (1976) suggested that red algae were the most sensitive group of macrophytes to oil and dispersant contamination (see Smith, 1968). Saccharina latissima has also been found to be sensitive to antifouling compounds. Johansson (2009) exposed samples of Saccharina latissima to several antifouing compounds, observing chlorothalonil, DCOIT, dichlofluanid and tolylfluanid inhibited photosynthesis. Exposure to Chlorothalonil and tolylfluanid, was also found to continue inhibiting oxygen evolution after exposure had finished, and may cause irreversible damage.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Radionuclide contamination [Show more]

Radionuclide contamination

Benchmark. An increase in 10µGy/h above background levels. Further detail

Evidence

No evidence

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Introduction of other substances [Show more]

Introduction of other substances

Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

Evidence

This pressure is Not assessed.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
De-oxygenation [Show more]

De-oxygenation

Benchmark. Exposure to dissolved oxygen concentration of less than or equal to 2 mg/l for one week (a change from WFD poor status to bad status). Further detail

Evidence

Reduced oxygen concentrations can inhibit both photosynthesis and respiration in macroalgae (Kinne, 1977). Despite this, macroalgae are thought to buffer the environmental conditions of low oxygen, thereby acting as a refuge for organisms in oxygen depleted regions especially if the oxygen depletion is short-term (Frieder et al., 2012). A rapid recovery from a state of low oxygen is expected if the environmental conditions are transient. If levels do drop below 4 mg/l negative effects on these organisms can be expected with adverse effects occurring below 2mg/l (Cole et al., 1999).

Sensitivity Assessment. Reduced oxygen levels are likely to inhibit photosynthesis and respiration but not cause a loss of the macroalgae population directly. In addition, in tide swept conditions, deoxygenation is likely to highly localised and short lived.  Resistance has been assessed as ‘High’, Resilience as ‘High’. Sensitivity has been assessed as ‘Not sensitive’ at the benchmark level.

High
Medium
High
High
Help
High
High
High
High
Help
Not sensitive
Medium
High
High
Help
Nutrient enrichment [Show more]

Nutrient enrichment

Benchmark. Compliance with WFD criteria for good status. Further detail

Evidence

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reported Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983) reported after the installation of a new sewage treatment works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima  became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the communities, however 4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral algae species. Disparities between the findings of the aforementioned studies are likely to be related to the level of organic enrichment however could also be time dependant.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected six marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macro-algal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Sensitivity assessment. Although nutrients may not affect kelps directly, indirect effects such as turbidity may significantly affect photosynthesis. Furthermore organic enrichment may denude the associated community. However, the biotope is probably ‘Not sensitive’ at the benchmark levels (i.e. compliance with WFD criteria).

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not sensitive
NR
NR
NR
Help
Organic enrichment [Show more]

Organic enrichment

Benchmark. A deposit of 100 gC/m2/yr. Further detail

Evidence

Conolly & Drew (1985) found Saccharina latissima sporophytes had relatively higher growth rates when in close proximity to a sewage outlet in St Andrews, UK when compared to other sites along the east coast of Scotland. At St Andrews nitrate levels were 20.22 µM, which represents an approx 25% increase when compared to other comparable sites (approx 15.87 µM). Handå et al. (2013) also reported Saccharina latissima sporophytes grew approx 1% faster per day when in close proximity to Norwegian Salmon farms, where elevated ammonium can be readily absorbed.  Read et al. (1983) reported after the installation of a new sewage treatment  works which reduced the suspended solid content of liquid effluent by 60% in the Firth of Forth, Saccharina latissima became abundant where previously it had been absent. Bokn et al. (2003) conducted a nutrient loading experiment on intertidal fucoids. Within 3 years of the experiment no significant effect was observed in the communities, however 4-5 years into the experiment a shift occurred from perennials to ephemeral algae occurred. Although Bokn et al. (2003) focussed on fucoids the results could indicate that long-term (>4 years) nutrient loading can result in community shift to ephemeral algae species. Disparities between the findings of the aforementioned studies are likely to be related to the level of organic enrichment however could also be time dependant.

Johnston & Roberts (2009) conducted a meta analysis, which reviewed 216 papers to assess how a variety of contaminants (including sewage and nutrient loading) affected six marine habitats (including subtidal reefs). A 30-50% reduction in species diversity and richness was identified from all habitats exposed to the contaminant types. Johnston & Roberts (2009) however also highlighted that macro-algal communities are relative tolerant to contamination, but that contaminated communities can have low diversity assemblages which are dominated by opportunistic and fast growing species (Johnston & Roberts, 2009 and references therein).

Sensitivity assessment. Although nutrients may not affect kelps directly, indirect effects such as turbidity may significantly affect photosynthesis. Furthermore organic enrichment may denude the associated community. Resistance has therefore been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as ’Low’.

Medium
High
High
High
Help
High
High
Medium
High
Help
Low
High
High
High
Help

Physical Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Physical loss (to land or freshwater habitat) [Show more]

Physical loss (to land or freshwater habitat)

Benchmark. A permanent loss of existing saline habitat within the site. Further detail

Evidence

All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).  Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Physical change (to another seabed type) [Show more]

Physical change (to another seabed type)

Benchmark. Permanent change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa. Further detail

Evidence

If rock substrata were replaced with sedimentary substrata this would represent a fundamental change in habitat type, which kelp species would not be able to tolerate (Birkett et al., 1998). The biotope would be lost.

Sensitivity assessment. Resistance to the pressure is considered ‘None’, and resilience ‘Very low’ or ‘None’. The sensitivity of this biotope to change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa is assessed as ‘High’

None
High
High
High
Help
Very Low
High
High
High
Help
High
High
High
High
Help
Physical change (to another sediment type) [Show more]

Physical change (to another sediment type)

Benchmark. Permanent change in one Folk class (based on UK SeaMap simplified classification). Further detail

Evidence

Not relevant

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Habitat structure changes - removal of substratum (extraction) [Show more]

Habitat structure changes - removal of substratum (extraction)

Benchmark. The extraction of substratum to 30 cm (where substratum includes sediments and soft rock but excludes hard bedrock). Further detail

Evidence

The species characterizing this biotope are epifauna or epiflora occurring on hard substrata and would be sensitive to the removal of the habitat. However, extraction of rock substratum is considered unlikely and this pressure is considered to be ‘Not relevant’ to hard substratum habitats.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Abrasion / disturbance of the surface of the substratum or seabed [Show more]

Abrasion / disturbance of the surface of the substratum or seabed

Benchmark. Damage to surface features (e.g. species and physical structures within the habitat). Further detail

Evidence

Low level disturbances (e.g. solitary anchors) are unlikely to cause harm to the biotope as a whole, due to the impact’s small footprint. Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al. 2013) and not directly extracted from the seabed. Thus evidence to assess the resistance of Saccharina latissima to in/direct harvesting or abrasion is limited.

Sensitivity assessment. Abrasion by passing trawls or harvesting of macroalgae is likely remove a large proportion of the kelp biomass.  For example in kelp harvesting is likely to remove all the large canopy forming plants (Svendsen, 1972; Christie et al., 1998).  However, Saccharina latissima has been shown to be an early colonizer with the potential to recover rapidly (Kain, 1967; Leinaas & Christie, 1996). Therefore, resistance has been assessed as ‘None’, resilience as ‘High’, and sensitivity as ‘Low’.

 

None
Low
NR
NR
Help
High
High
High
High
Help
Medium
Low
Low
Low
Help
Penetration or disturbance of the substratum subsurface [Show more]

Penetration or disturbance of the substratum subsurface

Benchmark. Damage to sub-surface features (e.g. species and physical structures within the habitat). Further detail

Evidence

The species characterizing this biotope group are epifauna or epiflora occurring on hard substrata which is resistant to subsurface penetration. The assessment for abrasion at the surface only is therefore considered to equally represent sensitivity to this pressure. This pressure is not thought relevant to hard rock biotopes.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Changes in suspended solids (water clarity) [Show more]

Changes in suspended solids (water clarity)

Benchmark. A change in one rank on the WFD (Water Framework Directive) scale e.g. from clear to intermediate for one year. Further detail

Evidence

Suspended Particle Matter (SPM) concentration has a linear relationship with sub surface light attenuation (Kd) (Devlin et al., 2008). An increase in SPM results in a decrease in sub-surface light attenuation. Light availability and water turbidity are principal factors in determining kelp depth range (Birkett et al., 1998). Light penetration influences the maximum depth at which kelp species can grow and it has been reported that laminarians grow at depths at which the light levels are reduced to 1 percent of incident light at the surface. Maximal depth distribution of laminarians therefore varies from 100 m in the Mediterranean to only 6-7 m in the silt laden German Bight. In Atlantic European waters, the depth limit is typically 35 m. In very turbid waters the depth at which kelp is found may be reduced, or in some cases excluded completely (e.g. Severn Estuary), because of the alteration in light attenuation by suspended sediment (Birkett et al. 1998b; Lüning, 1990). Laminaria spp. show a decrease of 50% photosynthetic activity when turbidity increases by 0.1/m (light attenuation coefficient =0.1-0.2/m; Staehr & Wernberg, 2009). An increase in water turbidity will likely affect the photosynthetic ability of kelp, decrease abundance and density.

Sensitivity Assessment. An increase in water clarity from clear to intermediate (10-100mg/l) represent a change in light attenuation of ca 0.67-6.7 Kd/m, and is likely to result in a greater than 50% reduction in photosynthesis of Laminaria spp. Therefore the dominant kelp species will probably suffer a severe decline and resistance to this pressure is assessed as ‘None’.  Resilience is probably to this pressure is defined as ‘High’ at the benchmark. Hence, this biotope is regarded as having a sensitivity of ‘Medium ‘to this pressure.

None
High
High
High
Help
High
High
High
High
Help
Medium
High
High
High
Help
Smothering and siltation rate changes (light) [Show more]

Smothering and siltation rate changes (light)

Benchmark. ‘Light’ deposition of up to 5 cm of fine material added to the seabed in a single discrete event. Further detail

Evidence

Smothering by sediment e.g. 5 cm material during a discrete event, is unlikely to damage Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years; Parke, 1948)), IR.MIR.KT.SlatT is likely to be dependent on annual Saccharina latissima recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 5 cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that kelp gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Dendrodoa grossularia is a small ascidian, capable of reaching a size of approx 8.5 mm (Miller, 1954) and is therefore likely to be inundated by deposition of 5 cm of sediment. If inundation is long lasting then the understorey community may be adversely affected. However, IR.MIR.KT.SlatT is found within strong-moderately strong (0.5-3 m/sec) and therefore deposited sediments are unlikely to remain for more than a few tidal cycles.

Sensitivity assessment. Resistance has been assessed as ‘Medium’, resilience as ‘High’. Sensitivity has been assessed as ‘Low’.

Medium
Low
NR
NR
Help
High
High
High
High
Help
Low
Low
Low
Low
Help
Smothering and siltation rate changes (heavy) [Show more]

Smothering and siltation rate changes (heavy)

Benchmark. ‘Heavy’ deposition of up to 30 cm of fine material added to the seabed in a single discrete event. Further detail

Evidence

Smothering by sediment e.g. 30 cm material during a discrete event, is unlikely to damage Saccharina latissima sporophytes but may affect holdfast fauna, gametophyte survival, interfere with zoospore settlement and therefore recruitment processes (Moy & Christie, 2012). Given the short life expectancy of Saccharina latissima (2-4 years Parke, 1948)), IR.MIR.KT.SlatT is likely to be dependent on annual recruitment (Moy & Christie, 2012). Given the microscopic size of the gametophyte, 30cm of sediment could be expected to significantly inhibit growth. However, laboratory studies showed that gametophytes can survive in darkness for between 6-16 months at 8°C and would probably survive smothering by a discrete event. Once returned to normal conditions the gametophytes resumed growth or maturation within 1 month (Dieck, 1993). Intolerance to this factor is likely to be higher during the peak periods of sporulation and/or spore settlement.

Dendrodoa grossularia is a small ascidian, capable of reaching a size of approx 8.5mm (Miller, 1954) and is therefore likely to be inundated by deposition of 30 cm of sediment. If inundation is long lasting then the understorey community may be adversely affected. However, IR.MIR.KT.SlatT is found within strong-moderately strong (0.5-3m/sec) and therefore deposited sediments are likely to be cleared rapidly, but inundation is likely to cause mortality in the understorey community.

Sensitivity assessment. Resistance has been assessed as ‘Low’, resilience as ‘High’. Sensitivity has been assessed as ‘Low’.

Medium
Low
NR
NR
Help
Medium
High
High
High
Help
Medium
Low
Low
Low
Help
Litter [Show more]

Litter

Benchmark. The introduction of man-made objects able to cause physical harm (surface, water column, seafloor or strandline). Further detail

Evidence

Not assessed. There is no evidence to suggest that litter would affect kelp.

Not Assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Not assessed (NA)
NR
NR
NR
Help
Electromagnetic changes [Show more]

Electromagnetic changes

Benchmark. A local electric field of 1 V/m or a local magnetic field of 10 µT. Further detail

Evidence

No evidence

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Underwater noise changes [Show more]

Underwater noise changes

Benchmark. MSFD indicator levels (SEL or peak SPL) exceeded for 20% of days in a calendar year. Further detail

Evidence

Saccharina lattissima has no hearing perception but vibrations may cause an impact, however no studies exist to support an assessment (where relevant).

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Introduction of light or shading [Show more]

Introduction of light or shading

Benchmark. A change in incident light via anthropogenic means. Further detail

Evidence

There is no evidence to suggest that anthropogenic light sources would affect IR.MIR.KT.SlatT. Shading (e.g. by construction of a pontoon, pier etc) could adversely affect IR.MIR.KT.SlatT in areas where the water clarity is also low, and tip the balance to shade tolerant species, resulting in the loss of the biotope directly within the shaded area. IR.MIR.KT.SlatT is already affected by high water turbidity (Connor et al., 2004), and Saccharina lattissima is therefore relatively sparse.

Sensitivity assessment. Resistance is probably 'Low', with a 'High' resilience and a sensitivity of 'Low', albeit with 'low' confidence due to the lack of direct evidence.

Low
Low
NR
NR
Help
High
Low
NR
NR
Help
Low
Low
Low
Low
Help
Barrier to species movement [Show more]

Barrier to species movement

Benchmark. A permanent or temporary barrier to species movement over ≥50% of water body width or a 10% change in tidal excursion. Further detail

Evidence

Not relevant–This pressure is considered applicable to mobile species, e.g. fish and marine mammals rather than seabed habitats. Physical and hydrographic barriers may limit the dispersal of spores.  But spore dispersal is not considered under the pressure definition and benchmark.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Death or injury by collision [Show more]

Death or injury by collision

Benchmark. Injury or mortality from collisions of biota with both static or moving structures due to 0.1% of tidal volume on an average tide, passing through an artificial structure. Further detail

Evidence

Not relevant to seabed habitats.  NB. Collision by grounding vessels is addressed under ‘surface abrasion’.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Visual disturbance [Show more]

Visual disturbance

Benchmark. The daily duration of transient visual cues exceeds 10% of the period of site occupancy by the feature. Further detail

Evidence

Not relevant

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help

Biological Pressures

Use [show more] / [show less] to open/close text displayed

ResistanceResilienceSensitivity
Genetic modification & translocation of indigenous species [Show more]

Genetic modification & translocation of indigenous species

Benchmark. Translocation of indigenous species or the introduction of genetically modified or genetically different populations of indigenous species that may result in changes in the genetic structure of local populations, hybridization, or change in community structure. Further detail

Evidence

No evidence

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
No evidence (NEv)
NR
NR
NR
Help
Introduction or spread of invasive non-indigenous species [Show more]

Introduction or spread of invasive non-indigenous species

Benchmark. The introduction of one or more invasive non-indigenous species (INIS). Further detail

Evidence

Competition with invasive macroalgae may be a potential threat to this biotope.  Potential invasives include Undaria pinnatifida, Sargassum muticum and Codium fragile spp. tormentosoides. In Nova Scotia, Codium fragile spp. tormentosoides competes successfully with native kelps for space including Laminaria digitata, exploiting gaps within the kelp beds.  Once established, the algal mat created by Codium fragile spp. tormentosoides prevents re-colonization by other macroalgae (Scheibling & Gagnon, 2006).

Sargassum muticum is a circumglobal invasive species (Engelen et al., 2015). It is recorded (2015) from Norway to Morocco and into the Mediterranean in the eastern Atlantic and from Alaska to Baja California in the eastern Pacific and from southern Russia to southern China in the western Pacific (Engelen et al., 2015).  It colonizes a variety of habitats and can tolerate -1°C to 30°C and survive salinities below 10 ppt.  Although fertilization does not occur below 15 ppt and growth of germlings is limited below 10°C it can complete its life cycle as long as temperatures are over 8°C for at least four months of the year (Engelen et al., 2015).  However, its distribution is limited by the availability of hard substratum (e.g. stones >10 cm) and light (Staeher et al., 2000; Strong & Dring 2011; Engelen et al., 2015).  It is most abundant between 1 and 3 m below mean water.  But it has been recorded at 18 m or 30 m in the clear waters of California.  However, it is a poor competitor under low light and only develops dense canopies in shallow areas (Engelen et al., 2015).

Sargassum muticum was shown to replace and out-compete leathery, canopy-forming macroalgae such as Saccharina latissima, Halidrys siliquosa, and Fucus spp. and, to a lesser degree, understorey species such as Codium fragile, Chondrus crispus and Dictyota dichotoma in Limfjorden, Denmark between 1984 and 1997 (Staehr et al., 2000; Engelen et al., 2015; de Bettignies et al., 2021).  The invasion in Limfjorden had stabilized by 2005 although many of the native macroalgal species continued to decline (Engelen et al., 2015).  In Limfjorden, the distribution of Sargassum muticum was limited to areas with hard substratum, in particular stones > 10 cm in diameter, while smaller stones, gravel and sand were unsuitable.  It was most abundant between 1 and 4 m in depth but had low cover at 0-0.5 m or 4-6 m, in the turbid waters of the Limfjorden.  Limfjorden is wave sheltered although wave exposure has been reported to restrict the growth and survival of Sargassum muticum (Staehr et al., 2000).  Viejo et al. (1995) reported that Sargassum muticum transplanted to wave exposed shores in Spain experienced >80% breakages within a month and that the growth of undamaged plants was significantly lower than that of plants on sheltered shores.  Similarly, Andrew & Viejo (1998) noted that Sargassum muticum was restricted to intertidal rockpools in wave exposed sites in the Bay of Biscay.

Strong & Dring (2011) used canopy removal experiments to investigate inter- and intra-species competition between Sargassum muticum and Saccharina latissima in the Dorn, Strangford Lough, N. Ireland.  The Dorn consists of tidal pools, very sheltered from wave action but with moderately strong tidal streams (1-2 knots).  Sargassum muticum grew better in mixed stands with Saccharina latissima than in the highest density monospecific stands examined.  However, the growth of Saccharina was not affected by the proportion of Sargassum in mixed stands.  They concluded that Saccharina was not impacted significantly by the alien species while Sargassum benefited from growth in mixed stands.  Experimental manipulation of subtidal algal canopies in San Juan Islands, Washington State, USA, showed that Sargassum muticum reduced the abundance of native macroalgae, including the kelp Laminaria bongardiana due to shadingHowever, experimental removal of Sargassum resulted in the recovery of native species within about one year (Britton-Simmons, 2004; Engelen et al., 2015).  The negative effects of Sargassum muticum on native macroalgae is mainly due to competition for light, rather than changes in nutrient availability, sedimentation or water flow (Britton-Simmons, 2004; Engelen et al., 2015).  

Undaria pinnatifida (Wakame or Asian kelp) is a large brown seaweed and an Invasive Non-Indigenous Species (INIS) that could out-compete native UK kelp species (see Farrell & Fletcher, 2006; Thompson & Schiel, 2012; Brodie et al., 2014; Hieser et al., 2014; Arnold et al., 2016; Epstein & Smale, 2017; Epstein & Smale, 2018; Kraan, 2017; Epstein et al., 2019a,b; Tidbury, 2020).  Undaria pinnatifida originates from Japan but is established currently on the coastlines of New Zealand, Australia, Northern France, Spain, Italy, the UK, Portugal, Belgium, Holland, Argentina, Mexico, and the USA (De Leij et al., 2017).  Undaria pinnatifida was first recorded in the UK in the Hamble Estuary in 1994 (Macleod et al., 2016).  It has since proliferated along UK coastlines.  One year after its discovery at the Queen Anne Battery marina, Plymouth, it had become a major fouling plant on pontoons (Minchin & Nunn, 2014).  Although initially restricted to artificial habitats, such as marinas and ports, it is now widespread in natural habitats in several areas, including Plymouth Sound.

Undaria pinnatifida seems to settle better on artificial substrata (e.g. floats, marinas, or piers) than on natural rocky shores among local kelps (Vaz-Pinto et al., 2014).  It is found predominantly in low intertidal to shallow subtidal habitats (Epstein et al., 2019b) and is significantly more abundant on artificial substrata compared to natural rocky substrata (Heiser et al., 2014; Epstein & Smale, 2018).  James (2017) suggested that Undaria pinnatifida could out-compete native species on artificial substrata (such as marinas and wharf structures).  In Plymouth, UK, De Leij et al. (2017) found that natural habitats with dense native macroalgal canopies, such as Laminaria hyperborea, Laminaria ochroleuca, Laminaria digitata, and Saccharina latissima had more resistance to Undaria pinnatifida invasion than disturbed or sparse canopies, due to limited space and light availability for Undaria pinnatifida recruits. However, the dense canopies did not always prevent the invasion of Undaria pinnatifida as sporophytes were still recorded within dense Laminaria canopies, so canopy disturbance was not always required (De Leij et al., 2017; Epstein & Smale, 2018).

Undaria pinnatifida species behaves as a winter annual and recruitment occurs in winter followed by rapid growth through spring, maturity, and then senescence through summer, with only the microscopic life stages persisting through autumn.  It exhibits multiple dispersal strategies, such as short-range spore dispersal, and long-range dispersal as whole drift plants or fragments.  Undaria pinnatifida has spread rapidly across the UK and Europe, resulting in community-wide responses and impacts (Vaz-Pinto et al., 2014; Epstein & Smale, 2017).  Its impacts are complex and context-specific, depending on space, time, and taxa present in the introduced location (Epstein & Smale, 2017; Teagle et al., 2017; Tidbury, 2020). Undaria pinnatifida has a wide physiological niche meaning it can occur in both coastal and estuarine environments showing tolerance for varying salinities, turbidity, and siltation (Heiser et al., 2014; Epstein & Smale, 2018).  Undaria pinnatifida prefers sites sheltered with low wave exposure and weak tidal streams (Heiser et al., 2014; Epstein & Smale, 2018).  In natural habitats, Undaria pinnatifida was not recorded if the wave fetch was greater than 642 km but increased in abundance and cover in very sheltered sites (Epstein & Smale, 2018).

In Plymouth Sound (UK), Epstein et al. (2019b) found that within its depth range (+1 to –4 m), Undaria pinnatifida co-existed with seven species of canopy-forming brown macroalgae, including Saccharina latissima.  However, they reported that Undaria pinnatifida biomass was negatively related to Saccharina latissima in both intertidal and subtidal habitats. This was only statistically significant in subtidal habitats, which suggested that there was some competition between the two species (Epstein et al., 2019b). Heiser et al. (2014) surveyed 17 sites within Plymouth Sound, UK and found that Saccharina latissima was significantly more abundant at sites with Undaria pinnatifida with ca 5 Saccharina latissima individuals present per m², compared to ca 0.5 Saccharina latissima individuals per m² present at sites without Undaria pinnatifida.

Undaria pinnatifida has been reported to both co-exist with and out-compete Saccharina latissima (Farrell & Fletcher, 2006; Heiser et al., 2014; Epstein et al., 2019b). For example, in Torquay Marina, UK, Farrell & Fletcher (2006) completed a canopy removal experiment between 1996-2002. They reported that Saccharina latissima decreased in both control and treatment plots from ca 3 plants per 0.45 m² in 1996 to ca 1 plant per 0.45 m² in 1997 and had disappeared completely from pontoons by 2002. This coincided with a significant increase in Undaria pinnatifida from zero plants per 0.45 m² in 1996 to ca 6 plants per 0.45 m² in 1997. However, there was a slight decrease in Undaria pinnatifida in both control and treatment plots between 1997 and 1998.  By 2002, Undaria pinnatifida had recovered at control and treatment plots to ca 4-6 plants per 0.45 m² whereas Saccharina latissima had not.

The proliferation of Undaria pinnatifida and competition with native species may cause a reduction in local biodiversity (Valentine & Johnson, 2003; Vaz-Pinto et al., 2014; Arnold et al., 2016; Teagle, 2017; Tidbury, 2020).  A shift towards Undaria pinnatifida dominated beds could result in diminished epibiotic assemblages and lower local biodiversity compared with assemblages associated with native perennial kelp species, such as Laminaria spp. and Saccharina latissima (Arnold et al., 2016; Teagle et al., 2017).  In Plymouth, UK, Arnold et al. (2016) found that Undaria pinnatifida supported less than half the number of taxa and had no unique epibionts compared to Laminaria ochroleuca and Saccharina latissima (Arnold et al., 2016).

Undaria pinnatifida was successfully eradicated on a sunken ship in Clatham Islands, New Zealand, by applying a heat treatment of 70°C (Wotton et al., 2004).  However, numerous other eradication attempts have failed and, as noted by Fletcher & Farrell (1998), once established Undaria pinnatifida resists most attempts at long-term removal.

Sensitivity assessment.  The above evidence suggests that Undaria pinnatifida can both compete with and co-exist with Saccharina latissima, depending on local conditions.  For example, Undaria pinnatifida can out-compete Saccharina latissima in artificial habitats, such as in Torquay Marina but within natural habitats, it can co-exist with native kelp species within its depth range (-1 to 4 m), as shown in Plymouth Sound, UK.  However, this Saccharina latissima dominated biotope (IR.MIR.KT.SlatT) biotope is found in the shallow infralittoral (0-5 m, JNCC, 2015) sheltered from wave action but structured by strong tidal streams in turbid and variable salinity waters.  The evidence above suggests that Undaria prefers sheltered conditions, with a low tidal flow, and is less likely to out-compete Saccharina latissima under the conditions that define this biotope. 

However, Sargassum muticum prefers wave sheltered shallow sites in the sublittoral fringe and shallow infralittoral. Sargassum muticum was reported to out-compete and replace Saccharina latissima, and achieve maximum abundance at 1-4 m, in the turbid waters of the Limfjorden (Staehr et al., 2000; Engelen et al., 2015). But Strong & Dring (2011) concluded that Sargassum was not a threat to Saccharina latissima in the Dorn, Strangford Lough where it coexisted and grew better in mixed stands.  Hence, competition with Sargassum is probably site-specific and dependent on local conditions.

Therefore, resistance is assessed as ‘Low’ to represent colonization by Sargassum and the possible loss of Saccharina latissima, especially as the turbid conditions mirror those found in Limfjorden.  Even if the two species co-exist, the invasion may result in a change in the classification of the biotope and the structure of the understorey macroalgae (Staehr et al., 2000).  Recovery after invasion by Sargassum, although rapid, would require direct intervention (removal).  Hence, resilience is probably ‘Very low’ so sensitivity is assessed as ‘High’.  Overall, confidence is assessed as ‘Low’ due to evidence of variation and site-specific nature of competition between native kelps and both Undaria pinnatifida and Sargassum muticum.

Low
Low
NR
NR
Help
Very Low
High
High
High
Help
High
Low
Low
Low
Help
Introduction of microbial pathogens [Show more]

Introduction of microbial pathogens

Benchmark. The introduction of relevant microbial pathogens or metazoan disease vectors to an area where they are currently not present (e.g. Martelia refringens and Bonamia, Avian influenza virus, viral Haemorrhagic Septicaemia virus). Further detail

Evidence

Saccharina latissima may be infected by the microscopic brown alga Streblonema aecidioides. Infected algae show symptoms of Streblonema disease, i.e. alterations of the blade and stipe ranging from dark spots to heavy deformations and completely crippled thalli (Peters & Scaffelke, 1996). Infection can reduce growth rates of host algae.

Sensitivity assessment. Resistance to the pressure is considered ‘Medium’, and resilience ‘High’. The sensitivity of this biotope to introduction of microbial pathogens is assessed as ‘Low’.

Medium
Medium
High
Medium
Help
High
Low
NR
NR
Help
Low
Low
Low
Low
Help
Removal of target species [Show more]

Removal of target species

Benchmark. Removal of species targeted by fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

Evidence

Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed, as is the case with Laminaria hyperborea (see Christie et al., 1998).  As a consequence related literature on which to assess the “resistance” of Saccharina latissima to targeted harvesting is sparse. Similarly, at the time of writing, no evidence could be found to suggest that Dendrodoa grossularia is commercially exploited.

Sensitivity assessment. At the time of writing none of the characterising species are commercially extracted from the seabed. If extracted in the future resistance would need to be re-assessed. This pressure has been assessed as ‘Not Relevant’.

Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Not relevant (NR)
NR
NR
NR
Help
Removal of non-target species [Show more]

Removal of non-target species

Benchmark. Removal of features or incidental non-targeted catch (by-catch) through targeted fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

Evidence

Incidental removal of characterizing species from this biotope would likely have a fundamental effect on the ecology. Laminaria digitata is commercially extracted Saccharina latissima is commercially cultivated, however typically sporophytes are matured on ropes (Handå et al 2013) and not directly extracted from the seabed, as is the case with Laminaria hyperborea (see Christie et al., 1998). Similarly Dendrodoa grossularia is not currently a commercially exploited species. As a consequence relevant literature on which to assess the “resistance” of IR.MIR.KT.SlatT to incidental harvesting is sparse. If removed the characterizing species are likely to recover within 2 years.

Sensitivity assessment. Resistance has been assessed as ‘None’, resilience as ‘High’ and sensitivity as ‘Medium’.

None
Low
NR
NR
Help
Medium
High
High
High
Help
Medium
Low
Low
Low
Help

Bibliography

  1. Andersen, G.S., Steen, H., Christie, H., Fredriksen, S. & Moy, F.E., 2011. Seasonal patterns of sporophyte growth, fertility, fouling, and mortality of Saccharina latissima in Skagerrak, Norway: implications for forest recovery. Journal of Marine Biology, 2011, Article ID 690375, 8 pages.

  2. Andrew, N.L. & Viejo, R.M., 1998. Ecological limits to the invasion of Sargassum muticum in northern Spain. Aquatic Botany, 60 (3), 251-263. DOI https://doi.org/10.1016/S0304-3770(97)00088-0

  3. Arnold, M., Teagle, H., Brown, M.P. & Smale, D.A., 2016. The structure of biogenic habitat and epibiotic assemblages associated with the global invasive kelp Undaria pinnatifida in comparison to native macroalgae. Biological Invasions, 18 (3), 661-676. DOI https://doi.org/10.1007/s10530-015-1037-6

  4. Assis, J., Araújo, M.B. & Serrão, E.A., 2018. Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Global Change Biology, 24 (1), e55-e66. DOI https://doi.org/10.1111/gcb.13818

  5. Bekkby, T. & Moy, F.E., 2011. Developing spatial models of sugar kelp (Saccharina latissima) potential distribution under natural conditions and areas of its disappearance in Skagerrak. Estuarine Coastal and Shelf Science, 95 (4), 477-483.

  6. Beszczynska-Möller, A., & Dye, S.R., 2013. ICES Report on Ocean Climate 2012. In ICES Cooperative Research Report, vol. 321 pp. 73.

  7. Birkett, D.A., Maggs, C.A., Dring, M.J. & Boaden, P.J.S., 1998b. Infralittoral reef biotopes with kelp species: an overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Natura 2000 report prepared by Scottish Association of Marine Science (SAMS) for the UK Marine SACs Project., Scottish Association for Marine Science. (UK Marine SACs Project, vol VI.), 174 pp. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/reefkelp.pdf

  8. Bolton, J.J. & Lüning, K.A.F., 1982. Optimal growth and maximal survival temperatures of Atlantic Laminaria species (Phaeophyta) in culture. Marine Biology, 66, 89-94.

  9. Bower, S.M., 1996. Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish: Bald-sea-urchin Disease. [On-line]. Fisheries and Oceans Canada. [cited 26/01/16]. Available from: http://www.dfo-mpo.gc.ca/science/aah-saa/diseases-maladies/bsudsu-eng.html

  10. Breeman, A.M., 1990. Expected Effects of Changing Seawater Temperatures on the Geographic Distribution of Seaweed Species. In Beukema, J.J., et al. (eds.). Expected Effects of Climatic Change on Marine Coastal Ecosystems, Dordrecht: Springer Netherlands, pp. 69-76. DOI: https://doi.org/10.1007/978-94-009-2003-3_9

  11. Brennan, G., Kregting, L., Beatty, G.E., Cole, C., Elsäßer, B., Savidge, G. & Provan, J., 2014. Understanding macroalgal dispersal in a complex hydrodynamic environment: a combined population genetic and physical modelling approach. Journal of The Royal Society Interface, 11 (95), 20140197.

  12. Britton, D., Cornwall, C.E., Revill, A.T., Hurd, C.L. & Johnson, C.R., 2016. Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata. Scientific reports, 6 (1), 26036. DOI: https://doi.org/10.1038/srep26036

  13. Britton-Simmons, K.H., 2004. Direct and indirect effects of the introduced alga Sargassum muticum on benthic, subtidal communities of Washington State, USA. Marine Ecology Progress Series, 277, 61-78. DOI https://doi.org/10.3354/meps277061

  14. Brodie J., Williamson, C.J., Smale, D.A., Kamenos, N.A., Mieszkowska, N., Santos, R., Cunliffe, M., Steinke, M., Yesson, C. & Anderson, K.M., 2014. The future of the northeast Atlantic benthic flora in a high CO2 world. Ecology and Evolution, 4 (13), 2787-2798. DOI  https://doi.org/10.1002/ece3.1105

  15. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

  16. Burrows, M.T., Smale, D., O’Connor, N., Rein, H.V. & Moore, P., 2014. Marine Strategy Framework Directive Indicators for UK Kelp Habitats Part 1: Developing proposals for potential indicators. Joint Nature Conservation Comittee,  Peterborough. Report no. 525.

  17. Casas, G., Scrosati, R. & Piriz, M.L., 2004. The invasive kelp Undaria pinnatifida (Phaeophyceae, Laminariales) reduces native seaweed diversity in Nuevo Gulf (Patagonia, Argentina). Biological Invasions, 6 (4), 411-416.

  18. Cazenave, A. & Nerem, R.S., 2004. Present-day sea-level change: Observations and causes. Reviews of Geophysics, 42 (3). DOI https://doi.org/10.1029/2003rg000139

  19. Chamberlain, Y.M., 1996. Lithophylloid Corallinaceae (Rhodophycota) of the genera Lithophyllum and Titausderma from southern Africa. Phycologia, 35, 204-221.

  20. Christie, H., Fredriksen, S. & Rinde, E., 1998. Regrowth of kelp and colonization of epiphyte and fauna community after kelp trawling at the coast of Norway. Hydrobiologia, 375/376, 49-58.

  21. Church, J.A. & White, N.J., 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters, 33 (1). DOI https://doi.org/10.1029/2005gl024826

  22. Church, J.A., White, N.J., Coleman, R., Lambeck, K. & Mitrovica, J.X., 2004. Estimates of the Regional Distribution of Sea Level Rise over the 1950–2000 Period. Journal of Climate, 17 (13), 2609-2625.

  23. Cole, S., Codling, I.D., Parr, W. & Zabel, T., 1999. Guidelines for managing water quality impacts within UK European Marine sites. Natura 2000 report prepared for the UK Marine SACs Project. 441 pp., Swindon: Water Research Council on behalf of EN, SNH, CCW, JNCC, SAMS and EHS. [UK Marine SACs Project.]. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/water_quality.pdf

  24. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. ISBN 1 861 07561 8. In JNCC (2015), The Marine Habitat Classification for Britain and Ireland Version 15.03. [2019-07-24]. Joint Nature Conservation Committee, Peterborough. Available from https://mhc.jncc.gov.uk/

  25. Connor, D.W., Dalkin, M.J., Hill, T.O., Holt, R.H.F. & Sanderson, W.G., 1997a. Marine biotope classification for Britain and Ireland. Vol. 2. Sublittoral biotopes. Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06., Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06.

  26. Dauvin, J.C., Bellan, G., Bellan-Santini, D., Castric, A., Francour, P., Gentil, F., Girard, A., Gofas, S., Mahe, C., Noel, P., & Reviers, B. de., 1994. Typologie des ZNIEFF-Mer. Liste des parametres et des biocoenoses des cotes francaises metropolitaines. 2nd ed. Secretariat Faune-Flore, Museum National d'Histoire Naturelle, Paris (Collection Patrimoines Naturels, Serie Patrimoine Ecologique, No. 12). Coll. Patrimoines Naturels, vol. 12, Secretariat Faune-Flore, Paris.

  27. Davies, C.E. & Moss, D., 1998. European Union Nature Information System (EUNIS) Habitat Classification. Report to European Topic Centre on Nature Conservation from the Institute of Terrestrial Ecology, Monks Wood, Cambridgeshire. [Final draft with further revisions to marine habitats.], Brussels: European Environment Agency.

  28. Dayton, P.K. & Tegner, M.J., 1984. Catastrophic storms, El-Nino, and patch stability in a southern-california kelp community. Science, 224 (4646), 283-285.

  29. Dayton, P.K., Tegner, M.J., Parnell, P.E. & Edwards, P.B., 1992. Temporal and spatial patterns of disturbance and recovery in a kelp forest community. Ecological Monographs, 62, 421-445.

  30. De Bettignies, T., de Bettignies, F., Bartsch, I., Bekkby, T., Boiffin, A., Casado de Amezúa, P., Christie, H., Edwards, H., Fournier, N., García, A., Gauthier, L., Gillham, K., Halling, C., Harrald, M., Hennicke, J., Hernández, S., Kilnäs, M., Martinez, B., Mieszkowska, N., Moore, P., Moy, F., Mueller, M., Norderhaug, K.M., Ó Cadhla, O., Parry, M., Ramsay, K., Robertson, M., Russel, T., Serrão, E., Smale, D., Sousa Pinto, I., Steen, H., Street, M., Walday, M., Werner, T. & La Rivière, M., 2021. Background Document for Kelp Forests. OSPAR Commission, London, OSPAR 788/2021, 66 pp. Available from: https://www.ospar.org/documents?v=46796

  31. De Leij, R., Epstein, G., Brown, M.P. & Smale, D.A., 2017. The influence of native macroalgal canopies on the distribution and abundance of the non-native kelp Undaria pinnatifida in natural reef habitats. Marine Biology, 164 (7). DOI https://doi.org/10.1007/s00227-017-3183-0

  32. Devlin, M.J., Barry, J., Mills, D.K., Gowen, R.J., Foden, J., Sivyer, D. & Tett, P., 2008. Relationships between suspended particulate material, light attenuation and Secchi depth in UK marine waters. Estuarine, Coastal and Shelf Science, 79 (3), 429-439.

  33. Dieck, T.I., 1992. North Pacific and North Atlantic digitate Laminaria species (Phaeophyta): hybridization experiments and temperature responses. Phycologia, 31, 147-163.

  34. Dieck, T.I., 1993. Temperature tolerance and survival in darkness of kelp gametophytes (Laminariales: Phaeophyta) - ecological and biogeographical implications. Marine Ecology Progress Series, 100, 253-264.

  35. Dupont, S. & Thorndyke, M.C., 2009. Impact of CO2‐driven ocean acidification on invertebrates early life‐history‐what we know, what we need to know and what we can do. Biogeosciences, 6, 3109– 3131
  36. Edwards, A., 1980. Ecological studies of the kelp Laminaria hyperborea and its associated fauna in south-west Ireland. Ophelia, 9, 47-60.

  37. Elner, R.W. & Vadas, R.L., 1990. Inference in ecology: the sea urchin phenomenon in the northwest Atlantic. American Naturalist, 136, 108-125.

  38. Engelen, A.H., Leveque, L., Destombe, C. & Valer, M., 2011. Spatial and temporal patterns of recovery of low intertidal Laminaria digitata after experimental spring and autumn removal. Cahiers De Biologie Marine, 52 (4), 441-453.

  39. Engelen, A.H., Serebryakova, A., Ang, P., Britton-Simmons, K., Mineur, F., Pedersen, M. F., & Toth, G., 2015. Circumglobal invasion by the brown seaweed Sargassum muticum. Oceanography and Marine Biology: An Annual Review, 53, 81-126.

  40. Epstein, G. & Smale, D.A., 2017. Undaria pinnatifida: A case study to highlight challenges in marine invasion ecology and management. Ecology and Evolution, 7 (20), 8624-8642. DOI https://doi.org/10.1002/ece3.3430

  41. Epstein, G. & Smale, D.A., 2018. Environmental and ecological factors influencing the spillover of the non-native kelp, Undaria pinnatifida, from marinas into natural rocky reef communities. Biological Invasions, 20 (4), 1049-1072. DOI https://doi.org/10.1007/s10530-017-1610-2

  42. Epstein, G., Foggo, A. & Smale, D.A., 2019a. Inconspicuous impacts: Widespread marine invader causes subtle but significant changes in native macroalgal assemblages. Ecosphere, 10 (7). DOI https://doi.org/10.1002/ecs2.2814

  43. Epstein, G., Hawkins, S.J. & Smale, D.A., 2019b. Identifying niche and fitness dissimilarities in invaded marine macroalgal canopies within the context of contemporary coexistence theory. Scientific Reports, 9. DOI https://doi.org/10.1038/s41598-019-45388-5

  44. Erwin, D.G., Picton, B.E., Connor, D.W., Howson, C.M., Gilleece, P. & Bogues, M.J., 1990. Inshore Marine Life of Northern Ireland. Report of a survey carried out by the diving team of the Botany and Zoology Department of the Ulster Museum in fulfilment of a contract with Conservation Branch of the Department of the Environment (N.I.)., Ulster Museum, Belfast: HMSO.

  45. Farrell, P. & Fletcher, R., 2006. An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). Journal of Experimental Marine Biology and Ecology, 334 (2), 236-243.

  46. Fletcher, R. & Farrell, P., 1998. Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvey) Suringar. Helgolander Meeresuntersuchungen, 52 (3-4), 259-275.

  47. Fletcher, R.L., 1996. The occurrence of 'green tides' - a review. In Marine Benthic Vegetation. Recent changes and the Effects of Eutrophication (ed. W. Schramm & P.H. Nienhuis). Berlin Heidelberg: Springer-Verlag. [Ecological Studies, vol. 123].

  48. Fredriksen, S., Sjøtun, K., Lein, T.E. & Rueness, J., 1995. Spore dispersal in Laminaria hyperborea (Laminariales, Phaeophyceae). Sarsia, 80 (1), 47-53.

  49. Frieder, C., Nam, S., Martz, T. & Levin, L., 2012. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences, 9 (10), 3917-3930.

  50. Frölicher, T.L., Fischer, E.M. & Gruber, N., 2018. Marine heatwaves under global warming. Nature, 560 (7718), 360-364. DOI https://doi.org/10.1038/s41586-018-0383-9

  51. Gerard, V.A. & Du Bois, K.R., 1988. Temperature ecotypes near the southern boundary of the kelp Laminaria saccharina. Marine Biology, 97, 575-580.

  52. Gerard, V.A., 1990. Ecotypic differentiation in the kelp Laminaria saccharina: Phase-specific adaptation in a complex life cycle. Marine Biology, 107 (3), 519-528. DOI https://doi.org/10.1007/bf01313437

  53. Gommez, J.L.C. & Miguez-Rodriguez, L.J., 1999. Effects of oil pollution on skeleton and tissues of Echinus esculentus L. 1758 (Echinodermata, Echinoidea) in a population of A Coruna Bay, Galicia, Spain. In Echinoderm Research 1998. Proceedings of the Fifth European Conference on Echinoderms, Milan, 7-12 September 1998, (ed. M.D.C. Carnevali & F. Bonasoro) pp. 439-447. Rotterdam: A.A. Balkema.

  54. Gordillo, F.J.L., Aguilera, J., Wiencke, C. & Jiménez, C., 2015. Ocean acidification modulates the response of two Arctic kelps to ultraviolet radiation. Journal of Plant Physiology, 173, 41-50. DOI https://doi.org/10.1016/j.jplph.2014.09.008

  55. Gordillo, F.J.L., Dring, M.J. & Savidge, G., 2002. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Marine Ecology Progress Series, 234, 111-116.

  56. Gorman, D., Bajjouk, T., Populus, J., Vasquez, M. & Ehrhold, A., 2013. Modeling kelp forest distribution and biomass along temperate rocky coastlines. Marine Biology, 160 (2), 309-325.

  57. Grandy, N., 1984. The effects of oil and dispersants on subtidal red algae. Ph.D. Thesis. University of Liverpool.

  58. Hammer, L., 1972. Anaerobiosis in marine algae and marine phanerograms. In Proceedings of the Seventh International Seaweed Symposium, Sapporo, Japan, August 8-12, 1971 (ed. K. Nisizawa, S. Arasaki, Chihara, M., Hirose, H., Nakamura V., Tsuchiya, Y.), pp. 414-419. Tokyo: Tokyo University Press.

  59. Harkin, E., 1981. Fluctuations in epiphyte biomass following Laminaria hyperborea canopy removal. In Proceedings of the Xth International Seaweed Symposium, Gø teborg, 11-15 August 1980 (ed. T. Levring), pp.303-308. Berlin: Walter de Gruyter.

  60. Hayward, P.J. 1988. Animals on seaweed. Richmond, Surrey: Richmond Publishing Co. Ltd. [Naturalists Handbooks 9].

  61. Heiser, S., Hall-Spencer, J.M. & Hiscock, K., 2014. Assessing the extent of establishment of Undaria pinnatifida in Plymouth Sound Special Area of Conservation, UK. Marine Biodiversity Records, 7, e93.

  62. Hiscock, K. & Mitchell, R., 1980. The Description and Classification of Sublittoral Epibenthic Ecosystems. In The Shore Environment, Vol. 2, Ecosystems, (ed. J.H. Price, D.E.G. Irvine, & W.F. Farnham), 323-370. London and New York: Academic Press. [Systematics Association Special Volume no. 17(b)].

  63. Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. Countryside Council for Wales, Bangor, Contract Science Report, no. 65.

  64. Hopkin, R. & Kain, J.M., 1978. The effects of some pollutants on the survival, growth and respiration of Laminaria hyperborea. Estuarine and Coastal Marine Science, 7, 531-553.

  65. Huthnance, J., 2010. Temperature and salinity, in: Charting the Progress 2: Ocean processes feeder report, section 3.2. (eds. Buckley, P., et al.): UKMMAS, Defra, London.

  66. Iñiguez, C., Carmona, R., Lorenzo, M.R., Niell, F.X., Wiencke, C. & Gordillo, F.J.L., 2016. Increased temperature, rather than elevated CO2, modulates the carbon assimilation of the Arctic kelps Saccharina latissima and Laminaria solidungula. 163 (12), 248. DOI https://doi.org/10.1007/s00227-016-3024-6

  67. IPCC (Intergovernmental Panel on Climate Change), 2019. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 1170 pp. Available from https://www.ipcc.ch/srocc/home/

  68. James, K, 2017. A review of the impacts from invasion by the introduced kelp Undaria pinnatifida. Waikato Regional Council Technical Report 2016/40, Institute of Marine Science, University of Auckland, Hamilton, 40 pp. Available from: https://www.waikatoregion.govt.nz/assets/WRC/WRC-2019/TR201640.pdf

  69. JNCC (Joint Nature Conservation Committee), 2022.  The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/

  70. JNCC (Joint Nature Conservation Committee), 2022.  The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/

  71. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

  72. Jones, C.G., Lawton, J.H. & Shackak, M., 1994. Organisms as ecosystem engineers. Oikos, 69, 373-386.

  73. Jones, D.J., 1971. Ecological studies on macro-invertebrate communities associated with polluted kelp forest in the North Sea. Helgolander Wissenschaftliche Meersuntersuchungen, 22, 417-431.

  74. Jones, L.A., Hiscock, K. & Connor, D.W., 2000. Marine habitat reviews. A summary of ecological requirements and sensitivity characteristics for the conservation and management of marine SACs. Joint Nature Conservation Committee, Peterborough. (UK Marine SACs Project report.). Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/marine-habitats-review.pdf

  75. Jones, N.S. & Kain, J.M., 1967. Subtidal algal recolonisation following removal of Echinus. Helgolander Wissenschaftliche Meeresuntersuchungen, 15, 460-466.

  76. Kain, J.M., 1964. Aspects of the biology of Laminaria hyperborea III. Survival and growth of gametophytes. Journal of the Marine Biological Association of the United Kingdom, 44 (2), 415-433.

  77. Kain, J.M. & Svendsen, P., 1969. A note on the behaviour of Patina pellucida in Britain and Norway. Sarsia, 38, 25-30.

  78. Kain, J.M., 1971a. Synopsis of biological data on Laminaria hyperborea. FAO Fisheries Synopsis, no. 87.

  79. Kain, J.M., 1975a. Algal recolonization of some cleared subtidal areas. Journal of Ecology, 63, 739-765.

  80. Kain, J.M., 1979. A view of the genus Laminaria. Oceanography and Marine Biology: an Annual Review, 17, 101-161.

  81. Kain, J.M., 1987. Photoperiod and temperature as triggers in the seasonality of Delesseria sanguinea. Helgolander Meeresuntersuchungen, 41, 355-370.

  82. Kain, J.M., & Norton, T.A., 1990. Marine Ecology. In Biology of the Red Algae, (ed. K.M. Cole & Sheath, R.G.). Cambridge: Cambridge University Press.

  83. Kain, J.M., Drew, E.A. & Jupp, B.P., 1975. Light and the ecology of Laminaria hyperborea II. In Proceedings of the Sixteenth Symposium of the British Ecological Society, 26-28 March 1974. Light as an Ecological Factor: II (ed. G.C. Evans, R. Bainbridge & O. Rackham), pp. 63-92. Oxford: Blackwell Scientific Publications.

  84. Karsten, U., 2007. Research note: salinity tolerance of Arctic kelps from Spitsbergen. Phycological Research, 55 (4), 257-262.

  85. Kinne, O., 1977. International Helgoland Symposium "Ecosystem research": summary, conclusions and closing. Helgoländer Wissenschaftliche Meeresuntersuchungen, 30(1-4), 709-727.

  86. Kitching, J., 1941. Studies in sublittoral ecology III. Laminaria forest on the west coast of Scotland; a study of zonation in relation to wave action and illumination. The Biological Bulletin, 80 (3), 324-337

  87. Koch, M., Bowes, G., Ross, C. & Zhang, X.-H., 2013. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Global Change Biology, 19 (1), 103-132. DOI https://doi.org/10.1111/j.1365-2486.2012.02791.x

  88. Kraan, S., 2017. Undaria marching on; late arrival in the Republic of Ireland. Journal of Applied Phycology, 29 (2), 1107-1114. DOI https://doi.org/10.1007/s10811-016-0985-2

  89. Krause-Jensen, D., Duarte, C.M., Hendriks, I.E., Meire, L., Blicher, M.E., Marbà, N. & Sejr, M.K., 2015. Macroalgae contribute to nested mosaics of pH variability in a subarctic fjord. Biogeosciences, 12 (16), 4895-4911. DOI https://doi.org/10.5194/bg-12-4895-2015

  90. Kregting, L., Blight, A., Elsäßer, B. & Savidge, G., 2013. The influence of water motion on the growth rate of the kelp Laminaria hyperborea. Journal of Experimental Marine Biology and Ecology, 448, 337-345.

  91. Kruuk, H., Wansink, D. & Moorhouse, A., 1990. Feeding patches and diving success of otters, Lutra lutra, in Shetland. Oikos, 57, 68-72.

  92. Lang, C. & Mann, K., 1976. Changes in sea urchin populations after the destruction of kelp beds. Marine Biology, 36 (4), 321-326.

  93. Lein, T.E., Sjøtun, K. & Wakili, S., 1991. Mass-occurrence of a brown filamentous endophyte in the lamina of the kelp Laminaria hyperborea (Gunnerus) Foslie along the southwestern coast of Norway. Sarsia, 76 (3), 187-193. DOI https://doi.org/10.1080/00364827.1991.10413474

  94. Leinaas, H.P. & Christie, H., 1996. Effects of removing sea urchins (Strongylocentrotus droebachiensis): stability of the barren state and succession of kelp forest recovery in the east Atlantic. Oecologia, 105(4), 524-536.

  95. Li, Y., Zhang, H., Tang, C., Zou, T. & Jiang, D., 2016. Influence of Rising Sea Level on Tidal Dynamics in the Bohai Sea. 74 (SI), 22-31. DOI https://doi.org/10.2112/si74-003.1

  96. Lobban, C.S. & Harrison, P.J., 1997. Seaweed ecology and physiology. Cambridge: Cambridge University Press.

  97. Lüning, K., 1990. Seaweeds: their environment, biogeography, and ecophysiology: John Wiley & Sons.

  98. Müller, R., Laepple, T., Bartsch, I. & Wiencke, C., 2009. Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Botanica Marina, 52 (6), 617-638.

  99. Macleod, A., Cottier-Cook, E., Hughes, D. & Allen, C., 2016. Investigating the impacts of marine invasive non-native species. Natural England Commissioned Report NECR223, Natural England, 58 pp. Available from: https://pureadmin.uhi.ac.uk/ws/portalfiles/portal/3729569/NECR223_edition_1.pdf

  100. Mann, K.H., 1982. Kelp, sea urchins, and predators: a review of strong interactions in rocky subtidal systems of eastern Canada, 1970-1980. Netherlands Journal of Sea Research, 16, 414-423.

  101. MarLIN, 2015. MarLIN (Marine Life Network). (13-10-2015). http://www.marlin.ac.uk

  102. Millar, R.H., 1954. The annual growth and reproductive cycle of the ascidian Dendrodoa grossularia (van Beneden). Journal of the Marine Biological Association of the United Kingdom, 33 (1), 33-48. DOI https://doi.org/10.1017/S0025315400003453

  103. Miller III, H.L., Neale, P.J. & Dunton, K.H., 2009. Biological weighting functions for UV inhibtion of photosynthesis in the kelp Laminaria hyperborea (Phaeophyceae) 1. Journal of Phycology, 45 (3), 571-584.

  104. Minchin, D. & Nunn, J., 2014. The invasive brown alga Undaria pinnatifida (Harvey) Suringar, 1873 (Laminariales: Alariaceae), spreads northwards in Europe. Bioinvasions Records, 3 (2), 57-63. DOI http://dx.doi.org/10.3391/bir.2014.3.2.01

  105. Moore, P.G., 1973a. The kelp fauna of north east Britain I. Function of the physical environment. Journal of Experimental Marine Biology and Ecology, 13, 97-125.

  106. Moore, P.G., 1973b. The kelp fauna of north east Britain. II. Multivariate classification: turbidity as an ecological factor. Journal of Experimental Marine Biology and Ecology, 13, 127-163.

  107. Moore, P.G., 1978. Turbidity and kelp holdfast Amphipoda. I. Wales and S.W. England. Journal of Experimental Marine Biology and Ecology, 32, 53-96.

  108. Moore, P.G., 1985. Levels of heterogeneity and the amphipod fauna of kelp holdfasts. In The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc. (ed. P.G. Moore & R. Seed), 274-289. London: Hodder & Stoughton Ltd.

  109. Moy, F.E. & Christie, H., 2012. Large-scale shift from sugar kelp (Saccharina latissima) to ephemeral algae along the south and west coast of Norway. Marine Biology Research, 8 (4), 309-321.

  110. NBN, 2015. National Biodiversity Network 2015(20/05/2015). https://data.nbn.org.uk/

  111. Nepper-Davidsen, J., Andersen, D.T. & Pedersen, M.F., 2019. Exposure to simulated heatwave scenarios causes long-term reductions in performance in Saccharina latissima. Marine Ecology Progress Series, 630, 25-39
  112. Nichols, D., 1981. The Cornish Sea-urchin Fishery. Cornish Studies, 9, 5-18.

  113. Norderhaug, K., 2004. Use of red algae as hosts by kelp-associated amphipods. Marine Biology, 144 (2), 225-230.

  114. Norderhaug, K.M. & Christie, H.C., 2009. Sea urchin grazing and kelp re-vegetation in the NE Atlantic. Marine Biology Research, 5 (6), 515-528.

  115. Norderhaug, K.M., Christie, H. & Fredriksen, S., 2007. Is habitat size an important factor for faunal abundances on kelp (Laminaria hyperborea)? Journal of Sea Research, 58 (2), 120-124.

  116. Nordheim, van, H., Andersen, O.N. & Thissen, J., 1996. Red lists of Biotopes, Flora and Fauna of the Trilateral Wadden Sea area, 1995. Helgolander Meeresuntersuchungen, 50 (Suppl.), 1-136.

  117. Norton, T.A., 1992. Dispersal by macroalgae. British Phycological Journal, 27, 293-301.

  118. Norton, T.A., Hiscock, K. & Kitching, J.A., 1977. The Ecology of Lough Ine XX. The Laminaria forest at Carrigathorna. Journal of Ecology, 65, 919-941.

  119. Nunes, J., McCoy, S.J., Findlay, H.S., Hopkins, F.E., Kitidis, V., Queirós, A.M., Rayner, L. & Widdicombe, S., 2015. Two intertidal, non-calcifying macroalgae (Palmaria palmata and Saccharina latissima) show complex and variable responses to short-term CO2 acidification. ICES Journal of Marine Science, 73 (3), 887-896. DOI https://doi.org/10.1093/icesjms/fsv081

  120. Pedersen, M., 2015. Temperature effects on the kelp Saccharina latissimaASLO,  Grenada, Spain,  pp.

  121. Pedersen, M.F., Nejrup, L.B., Fredriksen, S., Christie, H. & Norderhaug, K.M., 2012. Effects of wave exposure on population structure, demography, biomass and productivity of the kelp Laminaria hyperborea. Marine Ecology Progress Series, 451, 45-60.

  122. Penfold, R., Hughson, S., & Boyle, N., 1996. The potential for a sea urchin fishery in Shetland. http://www.nafc.ac.uk/publish/note5/note5.htm, 2000-04-14

  123. Philippart, C.J., Anadón, R., Danovaro, R., Dippner, J.W., Drinkwater, K.F., Hawkins, S.J., Oguz, T., O'Sullivan, G. & Reid, P.C., 2011. Impacts of climate change on European marine ecosystems: observations, expectations and indicators. Journal of Experimental Marine Biology and Ecology, 400 (1), 52-69.

  124. Pickering, M.D., Wells, N.C., Horsburgh, K.J. & Green, J.A.M., 2012. The impact of future sea-level rise on the European Shelf tides. Continental Shelf Research, 35, 1-15. DOI https://doi.org/10.1016/j.csr.2011.11.011

  125. Raffaelli, D.G.  & Hawkins, S.J., 1999. Intertidal Ecology 2nd edn.. London: Kluwer Academic Publishers.

  126. Read, P.A., Anderson, K.J., Matthews, J.E., Watson, P.G., Halliday, M.C. & Shiells, G.M., 1983. Effects of pollution on the benthos of the Firth of Forth. Marine Pollution Bulletin, 14, 12-16.

  127. Rebello, J., Ohno, M., Critchley, A. & Sawamura, M., 1996. Growth rates and agar quality of Gracilaria gracilis (Stackhouse) Steentoft from Namibia, Southern Africa. Botanica Marina, 39 (1-6), 273-280.

  128. Redmond, S. 2013. Effects of Increasing Temperature and Ocean Acidification on the Microstages of two Populations of Saccharina latissima in the Northwest Atlantic. Master of Science,  University of Connecticut.

  129. Rinde, E. & Sjøtun, K., 2005. Demographic variation in the kelp Laminaria hyperborea along a latitudinal gradient. Marine Biology, 146 (6), 1051-1062.

  130. Roleda, M.Y., Morris, J.N., McGraw, C.M. & Hurd, C.L., 2012. Ocean acidification and seaweed reproduction: increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Global Change Biology, 18 (3), 854-864. DOI https://doi.org/10.1111/j.1365-2486.2011.02594.x

  131. Rostron, D.M. & Bunker, F. St P.D., 1997. An assessment of sublittoral epibenthic communities and species following the Sea Empress oil spill. A report to the Countryside Council for Wales from Marine Seen & Sub-Sea Survey., Countryside Council for Wales, Bangor, CCW Sea Empress Contact Science, no. 177.

  132. Różycki, O. & Gruszxyński, M., 1991. On the infauna of an Arctic estuary Nottinghambukta, Svalbard. Polish Polar Research, 12 (3), 433-444.

  133. Scheibling, R.E. & Gagnon, P., 2006. Competitive interactions between the invasive green alga Codium fragile ssp tomentosoides and native canopy-forming seaweeds in Nova Scotia (Canada). Marine Ecology Progress Series, 325, 1-14.

  134. Schiel, D.R. & Foster, M.S., 1986. The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology: an Annual Review, 24, 265-307.

  135. SEEEC (Sea Empress Environmental Evaluation Committee), 1998. The environmental impact of the Sea Empress oil spill. Final Report of the Sea Empress Environmental Evaluation Committee, 135 pp., London: HMSO.

  136. Sheppard, C.R.C., Bellamy, D.J. & Sheppard, A.L.S., 1980. Study of the fauna inhabiting the holdfasts of Laminaria hyperborea (Gunn.) Fosl. along some environmental and geographical gradients. Marine Environmental Research, 4, 25-51.

  137. Sivertsen, K., 1997. Geographic and environmental factors affecting the distribution of kelp beds and barren grounds and changes in biota associated with kelp reduction at sites along the Norwegian coast. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2872-2887.

  138. Sjøtun, K., Christie, H. & Helge Fosså, J., 2006. The combined effect of canopy shading and sea urchin grazing on recruitment in kelp forest (Laminaria hyperborea). Marine Biology Research, 2 (1), 24-32.

  139. Sjøtun, K. & Schoschina, E.V., 2002. Gametophytic development of Laminaria spp. (Laminariales, Phaeophyta) at low temperatures. Phycologia, 41, 147-152.

  140. Smale, D.A., Burrows, M.T., Moore, P., O'Connor, N. & Hawkins, S.J., 2013. Threats and knowledge gaps for ecosystem services provided by kelp forests: a northeast Atlantic perspective. Ecology and evolution, 3 (11), 4016-4038.

  141. Smale, D.A., Wernberg, T., Yunnie, A.L. & Vance, T., 2014. The rise of Laminaria ochroleuca in the Western English Channel (UK) and comparisons with its competitor and assemblage dominant Laminaria hyperborea. Marine ecology.

  142. Smith, B.D., 1985. Recovery following experimental harvesting of Laminaria longicruris and Laminaria digitata in Southwestern Nova Scotia. Helgolander Meeresuntersuchungen, 39(1), 83-101.

  143. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

  144. Somerfield, P.J. & Warwick, R.M., 1999. Appraisal of environmental impact and recovery using Laminaria holdfast faunas. Sea Empress, Environmental Evaluation Committee., Countryside Council for Wales, Bangor, CCW Sea Empress Contract Science, Report no. 321.

  145. Staehr, P.A., Pedersen, M.F., Thomsen, M.S., Wernberg, T. & Krause-Jensen, D., 2000. Invasion of Sargassum muticum in Limfjorden (Denmark) and its possible impact on the indigenous macroalgal community. Marine Ecology Progress Series, 207, 79-88. DOI https://doi.org/10.3354/meps207079

  146. Steneck, R.S., Graham, M.H., Bourque, B.J., Corbett, D., Erlandson, J.M., Estes, J.A. & Tegner, M.J., 2002. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental conservation, 29 (04), 436-459.

  147. Steneck, R.S., Vavrinec, J. & Leland, A.V., 2004. Accelerating trophic-level dysfunction in kelp forest ecosystems of the western North Atlantic. Ecosystems, 7 (4), 323-332.

  148. Strong, J.A. & Dring, M.J., 2011. Macroalgal competition and invasive success: testing competition in mixed canopies of Sargassum muticum and Saccharina latissima. Botanica Marina, 54 (3), 223-229.

  149. Teagle, H., Hawkins, S. J., Moore, P. J. & Smale, D. A., 2017. The role of kelp species as biogenic habitat formers in coastal marine ecosystems. Journal of Experimental Marine Biology and Ecology, 492, 81-98. DOI https://doi.org/10.1016/j.jembe.2017.01.017

  150. Thompson, G.A. & Schiel, D.R., 2012. Resistance and facilitation by native algal communities in the invasion success of Undaria pinnatifida. Marine Ecology, Progress Series, 468, 95-105.

  151. Thompson, R.S. & Burrows, E.M., 1984. The toxicity of copper, zinc and mercury to the brown macroalga Laminaria saccharina. In Ecotoxicological testing for the marine environment (ed. G. Persoone, E. Jaspers, & C. Claus), Vol. 2, pp. 259-269. Ghent: Laboratory for biological research in aquatic pollution, State University of Ghent.

  152. Tidbury, H, 2020. Wakame (Undaria pinnatifida). GB Non-native Species Rapid Risk Assessment., 15 pp. Available from: http://www.nonnativespecies.org/index.cfm?pageid=143

  153. Vadas, R.L. & Elner, R.W., 1992. Plant-animal interactions in the north-west Atlantic. In Plant-animal interactions in the marine benthos, (ed. D.M. John, S.J. Hawkins & J.H. Price), 33-60. Oxford: Clarendon Press. [Systematics Association Special Volume, no. 46].

  154. Vadas, R.L., Johnson, S. & Norton, T.A., 1992. Recruitment and mortality of early post-settlement stages of benthic algae. British Phycological Journal, 27, 331-351.

  155. Valentine, J. P. & Johnson, C. R., 2003. Establishment of the introduced kelp Undaria pinnatifida in Tasmania depends on disturbance to native algal assemblages. Journal of Experimental Marine Biology and Ecology, 295 (1), 63-90. DOI https://doi.org/10.1016/S0022-0981(03)00272-7

  156. Van den Hoek, C., 1982. The distribution of benthic marine algae in relation to the temperature regulation of their life histories. Biological Journal of the Linnean Society, 18, 81-144.

  157. Van den Hoek, C., Mann, D.G. & Jahns, H.M., 1995. Algae: an introduction to phycology: Cambridge University Press.

  158. Vaz-Pinto, F., Rodil, I.F., Mineur, F., Olabarria, C. & Arenas, F., 2014. Understanding biological invasions by seaweeds. In Pereira, L. & Neto, J.M. (eds.). Marine algae: biodiversity, taxonomy, environmental assessment and biotechnology. Boca Raton, Florida: CRC Press, pp. 140-177.

  159. Viejo, R.M., Arrontes, J. & Andrew, N.L., 1995. An Experimental Evaluation of the Effect of Wave Action on the Distribution of Sargassum muticum in Northern Spain. , 38 (1-6), 437-442. DOI https://doi.org/10.1515/botm.1995.38.1-6.437

  160. Vost, L.M., 1983. The influence of Echinus esculentus grazing on subtidal algal communities. British Phycological Journal, 18, 211.

  161. Whittick, A., 1983. Spatial and temporal distributions of dominant epiphytes on the stipes of Laminaria hyperborea (Gunn.) Fosl. (Phaeophyta: Laminariales) in S.E. Scotland. Journal of Experimental Marine Biology and Ecology, 73, 1-10.

  162. WoRMS, 2015. World Register of Marine Species. (11/04/2007). http://www.marinespecies.org

  163. Wotton, D.M., O'Brien, C., Stuart, M.D. & Fergus, D.J., 2004. Eradication success down under: heat treatment of a sunken trawler to kill the invasive seaweed Undaria pinnatifida. Marine Pollution Bulletin, 49 (9), 844-849.

  164. Yarish, C., Penniman, C.A. & Egan, B., 1990. Growth and reproductibe responses of Laminaria longicruris (Laminariales, Phaeophyta) to nutrient enrichment. Hydrobiologia, 204, 505-511.

Citation

This review can be cited as:

Stamp, T. & Garrard, S.L., Lloyd, K.A., & Mardle, M.J., 2022. Saccharina latissima with foliose red seaweeds and ascidians on sheltered tide-swept infralittoral rock. In Tyler-Walters H. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 11-11-2024]. Available from: https://marlin.ac.uk/habitat/detail/1038

 Download PDF version


Last Updated: 17/05/2022