Mixed coral assemblage on Atlantic mid bathyal Lophelia pertusa reef framework (biogenic structure)
Researched by | Ellen Last & Matthew Ferguson & Laura Robson | Refereed by | This information is not refereed |
---|
Summary
UK and Ireland classification
Description
This biotope represents the extensive, mostly dead, framework of Lophelia pertusa that support a high diversity of species including various other corals such as Caryophylliidae, Stichopathes gravieri, Antipathella, Acanthogorgia armarta and Leiopathes. Other conspicuous taxa include anemone Phelliactis and encrusting sponges. This may be found associated with Lophelia pertusa reef summit or may form beneath escarpments where live colonies of Lophelia pertusa grow but subsequently break off and form a rubble framework. The same assemblage is found in the upper bathyal but associated species are likely to vary. The characterizing species listed refer to all mixed coral on Lophelia reef framework assemblages not just those found associated with the zone and substrate specified in this biotope. (Information from JNCC, 2015).
Depth range
600-1300 mAdditional information
-
Listed By
Sensitivity review
Sensitivity characteristics of the habitat and relevant characteristic species
The mixed coral assemblage on Lophelia pertusa reef framework occurs at a range of depths in the deep sea. The M.AtMB.Bi.CorRee.LopFra biotope occurs in the Atlantic mid bathyal zone and the M.AtUB.Bi.CorRee.LopFra biotope in the Atlantic upper bathyal zone. The sensitivity of these biotopes is assessed as a group, on the assumption that their sensitivity is very similar in terms of substratum and functional groups present. Any differences in species or biotope response to pressures are highlighted.
The biotopes are primarily composed of mixed corals. The assessment focuses on the coral species listed within the description (Caryophylliidae spp., Stichopathes gravieri, Antipathella spp., Acanthogorgia armata and Leiopathes spp.), with additional reference to the anemone Phelliactis. Encrusting sponges are common on a range of hard substrata and are not specific to this biotope. Therefore, these are not considered significant to the assessment of sensitivity. Very little information was available on deep-sea Caryophylliidae, particularly due to the lack of genus or species level information for the biotope. Where found, evidence has been included below. The underlying framework, formed by the scleractinian coral Lophelia pertusa, is crucial to these biotopes. The following assessment only considers the sensitivity of the framework itself, as it is composed mainly of dead coral. Further information on the ecology and sensitivity of live Lophelia pertusa can be found within the Atlantic upper bathyal live Lophelia pertusa reef (biogenic structure) assessment (M.AtUB.Bi.CorRee.LopPer).
Resilience and recovery rates of habitat
The formation of Lophelia framework is a long-term process (Roberts, 2002), dependent on natural degradation processes and natural minor damage or fragmentation. Reef formation is described in detail by Roberts et al. (2009). The reef structure created by Lophelia pertusa modifies the water flow regime within the reef (Mullins et al., 1981). The complex structure of the reef slows down water flow and can cause sediments to fall out of suspension. The reef also provides a wide range of niches for other species and the increase in biological activity within the reef can also increase sedimentation (Roberts et al., 2009).
Species overview, distribution and habitat preferences
Stichopathes gravieri, Antipathella spp. and Leiopathes spp. are all black corals, Caryophylliidae spp. are cup-corals, Acanthogorgia armata is a gorgonian and Phelliactis is an anemone. Acanthogorgia armata has a fan-like skeleton composed primarily of gorgonin, with some scleritic calcite, and a hollow-cross chambered, consolidated central axis (De Moura Neves, 2016; Wareham & Edinger, 2007). The species is confined to the Atlantic, and occurs off the Azores (Braga-Henriques et al., 2013), the UK, southern Iceland, Davis Strait (Buhl-Mortensen et al., 2015) and Canada (Gilkinson & Edinger, 2009; Kenchington et al., 2012; Mortensen & Buhl-Mortensen, 2004). It is notably absent from the Norwegian shelf, which is thought to be because the temperature range, currents and substrata around the Greenland-Scotland topographical barrier (Faroe-Shetland Channel) restrict the transport of larvae (Buhl-Mortensen et al., 2015). Wareham & Edinger (2007) found individual colonies <50 cm in height off Canada, in depths ranging from 171-1,415 m. Baker et al. (2012) found the maximum height of Acanthogorgia armata colonies off Newfoundland to be 51 cm, although the average height was 8 cm. In Canadian waters, Acanthogorgia armata was found in high abundance on cobbles (Mortensen & Buhl-Mortensen, 2004), and in Newfoundland, Baker et al. (2012) found Acanthogorgia armata associated with boulders, cobbles, gravel and mud-sand. Off the south of Iceland, the species occurs down to 2,137 m (Madsen, 1944 & The Icelandic Benthos database, 2007, cited in Buhl-Mortensen et al., 2015). The maximum water temperature was 10.7°C on average, and salinity in ranged from 34.87‰ to 35.05‰ at 300-400 m. Buhl-Mortensen et al. (2015) recorded the temperature range of Acanthogorgia armata to be from 1 to 12°C, although most records were within 3-4°C.
Stichopathes gravieri has a whip-like morphology with an unbranched corallum, a single row of polyps on the axis and a number of spine rows visible from one side (Tsounis et al., 2010). On a seamount in the Pacific abyssal seafloor southwest of California, Stichopathes sp. was found to occupy rocky substrata at depths of 550-1,150 m but was absent from sediment areas (Genin et al., 1986). The Eastern North Pacific seamounts also support Stichopathes sp. aggregations, where they occur down to 1,150 m (Opresko and Genin, 1990, cited in de Matos et al., 2014).
Leiopathes spp. have a feathered, branched morphology (Tsounis et al., 2010). Habitat suitability modelling for Leiopathes glaberrima in the Gulf of Mexico (Etnoyer et al., 2018) found that mean annual bottom temperature, slope and depth were the most important environmental predictor variables for model fitting. The model suggested that the preferred depth range of the species was 200-1,000 m. By-caught specimens of Leiopathes spp. in the Azores at depths of 183-512 m were recorded to have a mean height of 31.1 (±24) cm, a mean width of 62 (±47.8) cm and a mean length of 78.7 (±58) cm (Sampaio et al., 2012). One specimen from the Azores has been reported with a height of 3 m and an axis diameter of 4 cm (Carreiro-Silva et al., 2013). In the Mediterranean, the species Leiopathes glaberrima occurs from 100 m, but only forms dense forests at depths of 200 m or more (Bo et al., 2014). These assemblages occur on hard bedrock or on rocky boulders (Angeletti et al., 2015; Deidun et al., 2015). Colonies can be up to 2 m in height, with a basal diameter of approx. 7 cm (Angeletti et al., 2015; Bo et al., 2015). Deidun et al. (2015) observed newly settled colonies of Leiopathes glaberrima in the Mediterranean that were less than 5 cm high. In the UK, Leiopathes spp. colonies have been found at 1,280 m depth on silty bedrock slopes (Hughes & Narayanaswamy, 2013). There are many different phenotypes of Leiopathes spp., resulting in colonies of different colours (Deidun et al., 2015). The study by Carreiro-Silva et al. (2013) comprised three distinct morphotypes and the authors note that the Leiopathes genus in the NE Atlantic requires revision. However, Ruiz-Ramos et al. (2015) found that the different colour morphs of Leiopathes glaberrima, which also show variation in branching pattern and polyp size, do not represent different species in the Gulf of Mexico (at 248-674 m depths). Instead, the authors concluded that the species is phenotypically plastic. For example, different sites had significantly different branch densities and the colour morphs appeared to be influenced by depth, and potentially slope. Plasticity may be linked to variations in the local environment, such as food and water flow (Ruiz-Ramos et al., 2015).
There are five species within the genus Antipathella. Three occur off New Zealand (Antipathella aperta, Antipathella strigosa and Antipathella fiordensis), one in the Atlantic and Mediterranean (Antipathella subpinnata) and the other is common in the Macaronesian archipelagos (Antipathella wollastoni; Ocaña et al., 2006; Opresko, 2001). However, Ocaña et al. (2006) also observed Antipathella wollastoni in the Mediterranean. It is worth noting that the distinction between Antipathella wollastoni and Antipathella subpinnata has only recently been clarified (Opresko, 2001). Information on Antipathella subpinnata and Antipathella wollastoni is used for this sensitivity assessment, with additional reference to Antipathella fiordensis where appropriate.
Antipathella subpinnata is tree-like in shape with a flexible and resistant chitinous skeleton (Bo et al., 2009). In the Mediterranean basin, the species occurs from 54 to 500 m depths on exposed hard substrata (Bo et al., 2009, 2008). Bo et al. (2008) also found records of the species growing on rocks covered by fine muddy sediments (e.g. off Stromboli island, in the Mediterranean) and numerous large colonies on the artificial substratum of an iron wreck in the Ligurian Sea. Deidun et al. (2015) observed small colonies of Antipathella subpinnata within large colonies of Leiopathes glaberrima. De Matos et al. (2014) also observed the species colonizing other invertebrates (e.g. bivalves, hydrocorals and sponges). The species can occur as single, sparse or grouped colonies (Bo et al., 2008), as well as part of large mixed assemblages (Bo et al., 2009). Specimens of 80 to 120 cm in height have been observed in the Mediterranean, however, most were in the size classes 0-20 and 20-40 cm (Bo et al., 2009). Bo et al., (2008, 2009) determined that depth was likely to be the main parameter affecting the density of Antipathella subpinnata, whilst settlement and growth was likely to be affected by the substratum slope. For example, colony densities were low when the gradient was 30-60° (Bo et al., 2008). In contrast, Antipathella fiordensis is found on steeper slopes in New Zealand fiords, despite having a similar ecology (Bo et al., 2009; Grange & Singleton, 1988).
Stichopathes spp., Antipathella subpinnata, Antipathella wollastoni and Antipathella fiordensis have been shown to prefer areas exposed to strong currents (Bo et al., 2009, 2008; Tempera et al., 2001 cited in de Matos et al., 2014; Genin et al., 1986; Grange, 1988; Grange and Singleton, 1988). Even on a small scale, the density of Stichopathes spp. on a seamount southwest of California was higher on small knobs and pinnacles (Genin et al., 1986). The heightened position off the sea floor given by the dead Lophelia framework is therefore crucial for the species.
Two species within the genus Phelliactis are known to occur in the Porcupine Seabight, at depths of 719-1668 m (Phelliactis hertwigi) and 1600-2173 m (Phelliactis robusta; Van Praet et al., 1990). Phelliactis robusta was found on hard substrata, with a preference for steep slopes and canyon walls. At Hatton Bank, Phelliactis sp. was observed at depths of ca 500-650 m, where it was colonising coral rubble, coral framework and steeply sloping rock (Roberts et al., 2008).
Reproduction and development
Antipathella fiordensis and Antipathella subpinnata are both dioecious (Gaino and Scoccia, 2010; Parker et al., 1997). Antipathella wollastoni and Antipathella fiordensis are likely to be gonochoric broadcast spawners, where gametogenesis follows an annual cycle (Parker et al., 1997; Rakka et al., 2017). The reproductive cycle for Antipathella fiordensis was highly synchronous between and within colonies (Parker et al., 1997), however intra-colonial variation (e.g. polyp fecundity) was observed by both Parker et al. (1997) and Rakka et al. (2017) for Antipathella fiordensis and Antipathella wollastoni, respectively. Black corals are also thought to have very limited larval dispersal ability (Bo et al., 2014).
Antipathella subpinnata and Antipathella wollastoni both reproduce in summer (Gaino & Scoccia, 2010; Rakka et al., 2017). For Antipathella wollastoni, oogenesis has been shown to begin in June (when seawater temperature reaches 18°C), and spermatogenesis in July, with gametes reaching maturity by October, when the maximum oocyte size is reached (Rakka et al., 2017). In this study, gametes started disappearing from the polyps by November. Gamete maturation was positively correlated with sea surface temperature, however, spawning appeared to happen after the temperature peak of 21.1°C in September. The presence of multiple oocyte size cohorts in the mature stage (October), together with empty vesicles, suggested that repetitive spawning was likely to occur within a prolonged overall spawning period. Gaino & Scoccia (2010) noted that simultaneous spawning was also likely. Gametes are released as tight buoyant clusters of eggs and sperm from both the tentacles and mouth (Gaino & Scoccia, 2010). Fecundity for Antipathella wollastoni varied from 1 to 309 oocytes per polyp for the spent (November) and maturing (July) stages (Rakka et al., 2017). Polyp fecundity had a weak positive correlation with sea surface temperature but was positively correlated with colony height. The reproductive output of a single colony is a function of the polyp fecundity and the number of gravid polyps, therefore larger colonies are likely to have increased reproductive success and a higher contribution to recruitment.
Gametogenesis in Antipathella fiordensis (in New Zealand), was shown to occur in summer, from late November to February, with oocytes maintained until spawning in March (Parker et al., 1997). During the study, between November to February sea temperatures increased from 12 to 15°C, and then decreased to 14°C in March. It is worth noting that these temperatures were 2-3°C lower on average than those previously recorded by Grange et al. (1991, cited in Parker et al., 1997). Spawning is likely to have occurred over several weeks, after the highest temperature peak (February). Parker et al. (1997) noted a polyp fecundity range of 12-173 oocytes per polyp for Antipathella fiordensis. The largest oocytes were 100-140 µm. Female colonies were found to produce between 1.3 and 16.9 million oocytes, increasing with the size of the colony. The recruitment of Antipathella fiordensis has been noted to occur sporadically, at very low frequencies, with colonies <10 years having very high mortality rates (Grange, 1997, cited in Miller, 1998). Survivorship of colonies was found to increase with colony height and age (Grange, 1997, cited in Miller, 1998).
The planula larvae of Antipathella fiordensis are lecithotrophic, negatively buoyant, short-lived (10 days) and poor swimmers, hence they crawl on the substratum (Miller, 1997). Miller (1997) found that ciliated planulae of 200 µm in length developed within 36 hours after external fertilization of Antipathella fiordensis eggs. Miller (1998) suggested that the dispersal of black coral larvae, specifically Antipathella fiordensis (previously Antipathes fiordensis) was highly philopatric, that is, larvae settle close to parent colonies (within <5-10 m). However, the study also found that larvae or gametes may be more widely dispersed (>50 m) at certain sites. The scale of larval dispersal is, therefore, likely to be variable, with water flow playing a key role. Significant genetic differences have been found between sites 10-15 km apart within fiords, however as populations in geographically separated fiords were found to be genetically similar, Miller (1997) suggested that this is not evidence of isolation by distance.
Antipathella fiordensis also reproduces asexually via ‘polyp bailout’, forming highly mobile and ciliated planulae (Parker et al., 1997). This has been observed in the laboratory when the species is under stress (pers. comm./pers. obs., cited in Parker et al., 1997). Asexual reproduction can also occur via fragmentation, and evidence of this exists for Antipathella subpinnata (Coppari et al., 2019). Over seven months in aquaria, fast growth rates of up to 1.85 and 1.58 cm/month for whole fragments and new branchlets, respectively, were observed for this species. de Matos et al. (2014) recorded a colony of Antipathella subpinnata growing on an old discarded rag off the Azores. This colony specifically appeared to be a branch broken off from a larger colony that was beginning to regenerate, as no base or stem was present. A new branchlet was evident growing from the centre of the thickest part of the axis, presumably where the branch had broken off the mother colony (de Matos et al., 2014).
Sexual maturity in Antipathella fiordensis was found to occur at colony heights of 70 and 105 cm (Parker et al., 1997), which corresponded to a minimum age for sexual maturity of ~31 yrs, based on growth rate estimates (24.4 mm/year; Grange, 1997, cited in Parker et al., 1997). All colonies over 100 cm were mature, and colonies <49 cm were sexually immature, however, the largest immature colony was 90 cm (corresponding to an age of 37 years). However, slower growth rates of 16 mm/year have also been recorded for Antipathella fjordensis (Grange & Goldberg, 1993, cited in Love et al., 2007; Miller, 1998). Bo et al. (2008) collected two specimens of Antipathella subpinnata off Italy at a depth of 55-70 m. Despite one colony being 78 cm in height, neither of the colonies were sexually mature. In the Adriatic Sea (51 m), small colonies of Antipathella subpinnata (42 cm high) were found to be sexually immature, however, colonies 120 cm in height from the Tyrrhenian Sea (at 70 m) in August (at a water temperature of 16°C) were fertile (Gaino and Scoccia, 2010). When the water temperature was 14°C, between September to November, no fertile colonies were observed (Gaino & Scoccia, 2010).
Stichopathes spp. (two species in Puerto Rico) were reported to be gonochoric, with peak oocyte maturity in May-June (Goenaga, 1977, cited in Wagner et al., 2012). This study also reported that all of the female colonies spawned one day after the spawning of a male colony in the same aquarium. Therefore, females probably release oocytes in response to male pheromones, and fertilization is probably external (Goenaga, 1977, cited in Wagner et al., 2012). Oocyte size in these two Stichopathes spp. were ≤150 µm (Goenaga, 1977, cited in Wagner et al., 2011), and due to their high yolk content, Goenaga (1977, cited in Wagner et al., 2011) suggested that the larvae were likely to be short-lived and non-feeding. Mixed colonies of Stichopathes saccula with both male and female polyps were found by Pax et al. (1987, cited in Wagner et al., 2011) so the potential for simultaneous hermaphrodites cannot be excluded.
Leiopathes glaberrima has a mixed reproductive strategy and can reproduce through fragmentation as well as through long-distance dispersal of larvae (Ruiz-Ramos et al., 2015). Etnoyer et al. (2018) found that distinct classes were present in the size-frequency distribution of Leiopathes glaberrima, suggesting that the species reproduces through both periodic and episodic recruitment events. In the Gulf of Mexico (at 248-674 m depths), Ruiz-Ramos et al. (2015) suggested that there was a barrier for gene flow in Leiopathes glaberrima between sites 36.4 km apart. This was based upon sympatric individuals being assigned to two lineages. One lineage appeared capable of long-distance dispersal and indicated an out-bred species, whereas the other indicated more localized recruitment (self-fertilization, with relative isolation and limited habitat) with individuals being highly inbred. This mixed mating strategy is common in long-lived species, to maintain genetic diversity and colonize new habitats (ChybickiI & Burczyk, 2010, cited in Ruiz-Ramos et al., 2015). The authors also suggest that the recruitment of the different lineages might be influenced by local patterns of topography and current velocity.
Growth rates of Leiopathes glaberrima have been recorded as <10 µm/year off Hawaii, giving some specimens with a basal radial diameter of approx. 12 mm an age of approx. 2,377 years (Roark et al., 2006). The initial 5 mm of growth is thought to be faster, potentially ca 13 µm/year (i.e. over the first 400 years of growth), compared to the outer 8 mm of growth (Roark et al., 2006, 2009). The faster initial growth rates may help the colony establish (Roark et al., 2009). Another colony of Leiopathes spp. was found by Roark et al. (2009) to have an age of ~4,200 years. However, the living polyps are likely to be continuously replaced, as 14C dating has shown the carbon contained within these polyps is only a few years old. Prouty et al. (2011) reported different growth rate ranges of 8 to 22 µm/year for Leiopathes spp. in the Gulf of Mexico (at 300 m depth). They also found that growth rates decreased as the life span increased. For example, in the oldest specimen (of 2,040 years), growth decreased from 16 µm/year for the first 600 years, to an average of 8 µm/year throughout the colonies life span. Carreiro-Silva et al. (2013) also measured the growth rates of Leiopathes spp. from the Azores, at depths of 293-366 m. Radial growth rates for the smallest and largest colonies were 5-7 µm/year, however other colonies had growth rates of ca 20-30 µm/year. The study found that growth rates varied through the lifespan of a colony. In contrast to the results of Roark et al. (2006, 2009), Carreiro-Silva et al. (2013) found that, in a 2,320 year old specimen, growth rates were slowest over the initial 1,600 years and the last 300 years. The middle period (400 years) was characterized by a higher growth rate of 20 µm/year. Therefore, radial growth rates don’t correlate linearly to colony axis diameter or height. Williams et al. (2006) have also estimated that Leiopathes glaberrima (tentative ID) has a slightly radial growth rate of 14.5 µm/year, based upon specimens collected from 307-679 m depth off the southeastern continental slope of the United States and the north-central Gulf of Mexico, which were found to have ages of 198, 290, 386 and 483 years. However, this is still extremely slow.
Phelliactis hertwigi and Phelliactis robusta in the Porcupine Seabight, are known to be dioecious and are thought to spawn in cycles related to the rate and seasonality of organic matter depositions (Van Praet et al., 1990). This study found that, for both species, the gonads were developed in the mesoglea of the secondary mesenteries, with the twelve primary mesenteries being sterile. Oogenesis was found to take 8–9 months in Phelliactis hertwigi and 15-19 months in Phelliactis robusta, with spawning occurring in October/November and April/May, respectively (Van Praet et al., 1990).
Resilience assessment. Where resistance of the characterizing species is ‘None’, ‘Low’ or ‘Medium’, and the habitat has not been altered, resilience is assessed as ‘Very low’ (10-25 years). This is based upon the very slow growth rates and extreme life spans (maximum recorded is 4,200 years) of Leiopathes spp. (Carreiro-Silva et al., 2013; Prouty et al., 2011; Roark et al., 2006, 2009; Williams et al., 2006). Although the growth rates of Antipathella fiordensis are faster (24.4 mm/year; Grange, 1997, cited in Parker et al., 1997), sexual maturity isn’t reached until a minimum age of ~31 yrs (Parker et al., 1997) and recruitment occurs sporadically, at very low frequencies (Grange, 1997, cited in Miller, 1998). Colonies of Antipathella fiordensis <10 years old also have very high mortality rates, although survivorship increases with colony height (Grange, 1997, cited in Miller, 1998). Observations of Antipathella subpinnata in the Mediterranean also suggest that regeneration can occur from broken branches (de Matos et al., 2014). The confidences associated with this score are ‘High’ for Quality of Evidence, ‘Medium’ for Applicability of Evidence and ‘High’ for Degree of Concordance. An exception is made for permanent or ongoing (long-term) pressures where recovery is not possible as the pressure is irreversible, in which case resilience is assessed as ‘Very low’ by default.
Climate Change Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Global warming (extreme) [Show more]Global warming (extreme)Extreme emission scenario (by the end of this century 2081-2100) benchmark of:
EvidenceDeep waters off the continental shelf (200 – 2,500 m) are expected to see a lower temperature rise (ca 1°C) than shallow water habitats by the end of this century, regardless of scenario (FAO, 2019). Scleractinian corals such as Caryophyllidae may be more affected by temperature increases than ocean acidification stress (FAO, 2019). Gori et al. (2016) found that when the Caryophyllidae species, Desmophyllum dianthus, was exposed to an elevated temperature of 15°C, relative to a 12°C ambient benchmark, calcification rates were significantly reduced. When exposed to both this elevated temperature and an elevated pCO2 of 750 ppm (relative to a 390 ppm ambient benchmark), respiration rates were significantly reduced. As such, the study concluded that Desmophyllum dianthus is more sensitive to thermal than pCO2 stress. Global habitat suitability modelling for black corals, including the family Leiopathidae, Myriopathidae and Antipathidae (relevant for Leiopathes spp., Antipathella spp. and Stichopathes spp., respectively) found that temperature was the most important variable (with some influence from topography, surface productivity and oxygen level; Yesson et al., 2017). Seabed temperatures above 3°C found to be most suitable, although a model response to depth was also noted. Leiopathes spp. was recorded in a canyon in the southern Bay of Biscay, where temperatures ranged from 10-11°C (Sánchez et al., 2014). Leiopathes glaberrima was found alongside Lophelia pertusa in areas where temperatures ranged between 8.5 and 10.6°C over five days of measurements in the Gulf of Mexico (Davies et al., 2010). Within this five-day period, internal waves caused temperature fluctuations of 0.8°C over 5-11 hrs (Davies et al., 2010). Furthermore, high-frequency temperature variability over even shorter periods was also recorded at one of the coral sites (476 m depth), where a temperature rise of 0.5°C occurred within 20-30-minutes, followed by a slower temperature decline. Habitat suitability modelling for Leiopathes glaberrima in the Gulf of Mexico was undertaken by Etnoyer et al. (2018). The study found that mean annual bottom temperature (together with slope and depth) was the most important environmental predictor variable for model fitting. The predicted likelihood of suitable habitat was greatest at a mean annual bottom temperature range of 6 to 16°C. For the genus Antipathella, evidence is available for Antipathella subpinnata, Antipathella wollastoni and Antipathella fiordensis. Antipathella subpinnata colonies have been found in the Tyrrhenian Sea at water temperatures between 14-16°C (Gaino & Scoccia, 2010). Bo et al. (2008) suggest that temperature is the main environmental factor influencing the bathymetric distribution of Antipathella subpinnata in the Mediterranean, where the species doesn’t occur shallower than 50 m and temperatures are greater than 15°C. The authors state that this indicates that the species is stenothermal and unable to survive at temperatures in excess of 15°C. CTD (conductivity, temperature and depth) profiles from the Azores within the depth range where Antipathella subpinnata gardens occur, recorded temperatures of 14.5-14.9°C (Tempera, unpublished data, cited in de Matos et al., 2014). Similarly, ROV temperature sensors during the de Matos et al. (2014) study logged 15 and 16°C (±1°C) during the warmest months of the year. The seamounts and island slopes where colonies were collected also experience pronounced surface cooling (Bashmachnikov et al., 2004 cited in de Matos et al., 2014). This evidence further indicates that Antipathella subpinnata has a temperature tolerance of <15°C. Antipathella wollastoni occurs in the Azores, where summer temperatures are 18°C (Rakka et al., 2017). The gamete maturation of Antipathella wollastoni was positively correlated to sea surface temperature (SST). However, spawning appeared to happen after the temperature peak in September of 21.1°C. This indicated that high temperatures might be a cue for final gamete maturation, rather than spawning. Antipathella fiordensis occurs off New Zealand, where Parker et al. (1997) recorded temperatures between 11 and 15°C over the course of a year. It is worth noting that these temperatures were 2-3°C lower on average than those recorded in previous years by Grange et al. (1991, cited in Parker et al., 1997). Spawning also appeared to be linked to temperature, occurring after the highest temperature peak (February). The authors also noted that spawning occurred a month later than in the previous year, when the temperature was higher. Antipathella fiordensis therefore shows a reliance on temperature for control of oogenesis (Parker et al., 1997), meaning that fluctuating temperatures may interfere with reproduction. However, the inter-annual temperature variations suggest that the benchmark of an increase in temperature of 1°C is unlikely to negatively affect the species. Acanthogorgia armata has been found off the south of Iceland, where the maximum water temperature is 10.7°C on average (Madsen, 1944 & The Icelandic Benthos database, 2007, cited in Buhl-Mortensen et al., 2015). Buhl-Mortensen et al. (2015) also recorded the temperature range of Acanthogorgia armata to be from 1 to 12°C, although most occurrences were within 3-4°C. Specimens of Stichopathes spp. were observed in the Whittard Canyon (at 633-762 m depths), where temperatures were recorded at ca 9°C (Johnson et al., 2013). Stichopathes spp. have also been recorded in the northern Red Sea (depths of 357-437 m and 362-594 m, respectively), where bottom temperatures were 21.6°C (Qurban et al., 2014). Stichopathes cf. abyssicola has been recorded on the Hebrides Terrace seamount in the Northeast Atlantic, where temperatures vary from 3.97-7.62°C across the seamount (Henry et al., 2015). These values were recorded at depths between 1,040-3,157 m, at the summit and flank. The study found that the flanks are subject to high short-term variability in water temperature down to 1,500 m deep, consistent with an internal tide led oceanographic regime. Sensitivity assessment. Under all three scenarios (middle and high emission, and extreme scenarios), waters off the continental shelf are expected to increase marginally by approximately 1°C. The characterizing species Stichopathes gravieri, Antipathella spp., Acanthogorgia armata and Leiopathes spp. naturally occur within a range of bottom water temperatures, so are not likely to be affected by a change in bottom temperature at the pressure benchmark (a 1°C rise in temperature in the deep-sea). In particular, Leiopathes glabberima has been shown to inhabit areas subjected to natural high-frequency temperature variations of up to 1°C over periods of 20-30 minutes, 2.5 hours and 5-11 hours (Davies et al., 2010; Sánchez et al., 2014). However, evidence for one species within the family Caryophylliidae spp. (also characterizing), does show sensitivity to increased temperatures (Gori et al., 2016). Although the 3°C increase in temperature used in the study is higher than the 1°C benchmark for this pressure, significant reductions in calcification rates were observed. When subjected to both elevated pCO2 and temperature, respirations rates were significantly reduced. Hence, as Caryophylliidae spp. are potentially sensitive to changes in temperature. Therefore, resistance for this biotope is assessed as ‘Medium’, resilience as ‘Very low’ and sensitivity is assessed as ‘Medium’. | MediumHelp | Very LowHelp | MediumHelp |
Global warming (high) [Show more]Global warming (high)High emission scenario (by the end of this century 2081-2100) benchmark of:
EvidenceDeep waters off the continental shelf (200 – 2,500 m) are expected to see a lower temperature rise (ca 1°C) than shallow water habitats by the end of this century, regardless of scenario (FAO, 2019). Scleractinian corals such as Caryophyllidae may be more affected by temperature increases than ocean acidification stress (FAO, 2019). Gori et al. (2016) found that when the Caryophyllidae species, Desmophyllum dianthus, was exposed to an elevated temperature of 15°C, relative to a 12°C ambient benchmark, calcification rates were significantly reduced. When exposed to both this elevated temperature and an elevated pCO2 of 750 ppm (relative to a 390 ppm ambient benchmark), respiration rates were significantly reduced. As such, the study concluded that Desmophyllum dianthus is more sensitive to thermal than pCO2 stress. Global habitat suitability modelling for black corals, including the family Leiopathidae, Myriopathidae and Antipathidae (relevant for Leiopathes spp., Antipathella spp. and Stichopathes spp., respectively) found that temperature was the most important variable (with some influence from topography, surface productivity and oxygen level; Yesson et al., 2017). Seabed temperatures above 3°C found to be most suitable, although a model response to depth was also noted. Leiopathes spp. was recorded in a canyon in the southern Bay of Biscay, where temperatures ranged from 10-11°C (Sánchez et al., 2014). Leiopathes glaberrima was found alongside Lophelia pertusa in areas where temperatures ranged between 8.5 and 10.6°C over five days of measurements in the Gulf of Mexico (Davies et al., 2010). Within this five-day period, internal waves caused temperature fluctuations of 0.8°C over 5-11 hrs (Davies et al., 2010). Furthermore, high-frequency temperature variability over even shorter periods was also recorded at one of the coral sites (476 m depth), where a temperature rise of 0.5°C occurred within 20-30-minutes, followed by a slower temperature decline. Habitat suitability modelling for Leiopathes glaberrima in the Gulf of Mexico was undertaken by Etnoyer et al. (2018). The study found that mean annual bottom temperature (together with slope and depth) was the most important environmental predictor variable for model fitting. The predicted likelihood of suitable habitat was greatest at a mean annual bottom temperature range of 6 to 16°C. For the genus Antipathella, evidence is available for Antipathella subpinnata, Antipathella wollastoni and Antipathella fiordensis. Antipathella subpinnata colonies have been found in the Tyrrhenian Sea at water temperatures between 14-16°C (Gaino & Scoccia, 2010). Bo et al. (2008) suggest that temperature is the main environmental factor influencing the bathymetric distribution of Antipathella subpinnata in the Mediterranean, where the species doesn’t occur shallower than 50 m and temperatures are greater than 15°C. The authors state that this indicates that the species is stenothermal and unable to survive at temperatures in excess of 15°C. CTD (conductivity, temperature and depth) profiles from the Azores within the depth range where Antipathella subpinnata gardens occur, recorded temperatures of 14.5-14.9°C (Tempera, unpublished data, cited in de Matos et al., 2014). Similarly, ROV temperature sensors during the de Matos et al. (2014) study logged 15 and 16°C (±1°C) during the warmest months of the year. The seamounts and island slopes where colonies were collected also experience pronounced surface cooling (Bashmachnikov et al., 2004 cited in de Matos et al., 2014). This evidence further indicates that Antipathella subpinnata has a temperature tolerance of <15°C. Antipathella wollastoni occurs in the Azores, where summer temperatures are 18°C (Rakka et al., 2017). The gamete maturation of Antipathella wollastoni was positively correlated to sea surface temperature (SST). However, spawning appeared to happen after the temperature peak in September of 21.1°C. This indicated that high temperatures might be a cue for final gamete maturation, rather than spawning. Antipathella fiordensis occurs off New Zealand, where Parker et al. (1997) recorded temperatures between 11 and 15°C over the course of a year. It is worth noting that these temperatures were 2-3°C lower on average than those recorded in previous years by Grange et al. (1991, cited in Parker et al., 1997). Spawning also appeared to be linked to temperature, occurring after the highest temperature peak (February). The authors also noted that spawning occurred a month later than in the previous year, when the temperature was higher. Antipathella fiordensis therefore shows a reliance on temperature for control of oogenesis (Parker et al., 1997), meaning that fluctuating temperatures may interfere with reproduction. However, the inter-annual temperature variations suggest that the benchmark of an increase in temperature of 1°C is unlikely to negatively affect the species. Acanthogorgia armata has been found off the south of Iceland, where the maximum water temperature is 10.7°C on average (Madsen, 1944 & The Icelandic Benthos database, 2007, cited in Buhl-Mortensen et al., 2015). Buhl-Mortensen et al. (2015) also recorded the temperature range of Acanthogorgia armata to be from 1 to 12°C, although most occurrences were within 3-4°C. Specimens of Stichopathes spp. were observed in the Whittard Canyon (at 633-762 m depths), where temperatures were recorded at ca 9°C (Johnson et al., 2013). Stichopathes spp. have also been recorded in the northern Red Sea (depths of 357-437 m and 362-594 m, respectively), where bottom temperatures were 21.6°C (Qurban et al., 2014). Stichopathes cf. abyssicola has been recorded on the Hebrides Terrace seamount in the Northeast Atlantic, where temperatures vary from 3.97-7.62°C across the seamount (Henry et al., 2015). These values were recorded at depths between 1,040-3,157 m, at the summit and flank. The study found that the flanks are subject to high short-term variability in water temperature down to 1,500 m deep, consistent with an internal tide led oceanographic regime. Sensitivity assessment. Under all three scenarios (middle and high emission, and extreme scenarios), waters off the continental shelf are expected to increase marginally by approximately 1°C. The characterizing species Stichopathes gravieri, Antipathella spp., Acanthogorgia armata and Leiopathes spp. naturally occur within a range of bottom water temperatures, so are not likely to be affected by a change in bottom temperature at the pressure benchmark (a 1°C rise in temperature in the deep-sea). In particular, Leiopathes glabberima has been shown to inhabit areas subjected to natural high-frequency temperature variations of up to 1°C over periods of 20-30 minutes, 2.5 hours and 5-11 hours (Davies et al., 2010; Sánchez et al., 2014). However, evidence for one species within the family Caryophylliidae spp. (also characterizing), does show sensitivity to increased temperatures (Gori et al., 2016). Although the 3°C increase in temperature used in the study is higher than the 1°C benchmark for this pressure, significant reductions in calcification rates were observed. When subjected to both elevated pCO2 and temperature, respirations rates were significantly reduced. Hence, as Caryophylliidae spp. are potentially sensitive to changes in temperature. Therefore, resistance for this biotope is assessed as ‘Medium’, resilience as ‘Very low’ and sensitivity is assessed as ‘Medium’. | MediumHelp | Very LowHelp | MediumHelp |
Global warming (middle) [Show more]Global warming (middle)Middle emission scenario (by the end of this century 2081-2100) benchmark of:
EvidenceDeep waters off the continental shelf (200 – 2,500 m) are expected to see a lower temperature rise (ca 1°C) than shallow water habitats by the end of this century, regardless of scenario (FAO, 2019). Scleractinian corals such as Caryophyllidae may be more affected by temperature increases than ocean acidification stress (FAO, 2019). Gori et al. (2016) found that when the Caryophyllidae species, Desmophyllum dianthus, was exposed to an elevated temperature of 15°C, relative to a 12°C ambient benchmark, calcification rates were significantly reduced. When exposed to both this elevated temperature and an elevated pCO2 of 750 ppm (relative to a 390 ppm ambient benchmark), respiration rates were significantly reduced. As such, the study concluded that Desmophyllum dianthus is more sensitive to thermal than pCO2 stress. Global habitat suitability modelling for black corals, including the family Leiopathidae, Myriopathidae and Antipathidae (relevant for Leiopathes spp., Antipathella spp. and Stichopathes spp., respectively) found that temperature was the most important variable (with some influence from topography, surface productivity and oxygen level; Yesson et al., 2017). Seabed temperatures above 3°C found to be most suitable, although a model response to depth was also noted. Leiopathes spp. was recorded in a canyon in the southern Bay of Biscay, where temperatures ranged from 10-11°C (Sánchez et al., 2014). Leiopathes glaberrima was found alongside Lophelia pertusa in areas where temperatures ranged between 8.5 and 10.6°C over five days of measurements in the Gulf of Mexico (Davies et al., 2010). Within this five-day period, internal waves caused temperature fluctuations of 0.8°C over 5-11 hrs (Davies et al., 2010). Furthermore, high-frequency temperature variability over even shorter periods was also recorded at one of the coral sites (476 m depth), where a temperature rise of 0.5°C occurred within 20-30-minutes, followed by a slower temperature decline. Habitat suitability modelling for Leiopathes glaberrima in the Gulf of Mexico was undertaken by Etnoyer et al. (2018). The study found that mean annual bottom temperature (together with slope and depth) was the most important environmental predictor variable for model fitting. The predicted likelihood of suitable habitat was greatest at a mean annual bottom temperature range of 6 to 16°C. For the genus Antipathella, evidence is available for Antipathella subpinnata, Antipathella wollastoni and Antipathella fiordensis. Antipathella subpinnata colonies have been found in the Tyrrhenian Sea at water temperatures between 14-16°C (Gaino & Scoccia, 2010). Bo et al. (2008) suggest that temperature is the main environmental factor influencing the bathymetric distribution of Antipathella subpinnata in the Mediterranean, where the species doesn’t occur shallower than 50 m and temperatures are greater than 15°C. The authors state that this indicates that the species is stenothermal and unable to survive at temperatures in excess of 15°C. CTD (conductivity, temperature and depth) profiles from the Azores within the depth range where Antipathella subpinnata gardens occur, recorded temperatures of 14.5-14.9°C (Tempera, unpublished data, cited in de Matos et al., 2014). Similarly, ROV temperature sensors during the de Matos et al. (2014) study logged 15 and 16°C (±1°C) during the warmest months of the year. The seamounts and island slopes where colonies were collected also experience pronounced surface cooling (Bashmachnikov et al., 2004 cited in de Matos et al., 2014). This evidence further indicates that Antipathella subpinnata has a temperature tolerance of <15°C. Antipathella wollastoni occurs in the Azores, where summer temperatures are 18°C (Rakka et al., 2017). The gamete maturation of Antipathella wollastoni was positively correlated to sea surface temperature (SST). However, spawning appeared to happen after the temperature peak in September of 21.1°C. This indicated that high temperatures might be a cue for final gamete maturation, rather than spawning. Antipathella fiordensis occurs off New Zealand, where Parker et al. (1997) recorded temperatures between 11 and 15°C over the course of a year. It is worth noting that these temperatures were 2-3°C lower on average than those recorded in previous years by Grange et al. (1991, cited in Parker et al., 1997). Spawning also appeared to be linked to temperature, occurring after the highest temperature peak (February). The authors also noted that spawning occurred a month later than in the previous year, when the temperature was higher. Antipathella fiordensis therefore shows a reliance on temperature for control of oogenesis (Parker et al., 1997), meaning that fluctuating temperatures may interfere with reproduction. However, the inter-annual temperature variations suggest that the benchmark of an increase in temperature of 1°C is unlikely to negatively affect the species. Acanthogorgia armata has been found off the south of Iceland, where the maximum water temperature is 10.7°C on average (Madsen, 1944 & The Icelandic Benthos database, 2007, cited in Buhl-Mortensen et al., 2015). Buhl-Mortensen et al. (2015) also recorded the temperature range of Acanthogorgia armata to be from 1 to 12°C, although most occurrences were within 3-4°C. Specimens of Stichopathes spp. were observed in the Whittard Canyon (at 633-762 m depths), where temperatures were recorded at ca 9°C (Johnson et al., 2013). Stichopathes spp. have also been recorded in the northern Red Sea (depths of 357-437 m and 362-594 m, respectively), where bottom temperatures were 21.6°C (Qurban et al., 2014). Stichopathes cf. abyssicola has been recorded on the Hebrides Terrace seamount in the Northeast Atlantic, where temperatures vary from 3.97-7.62°C across the seamount (Henry et al., 2015). These values were recorded at depths between 1,040-3,157 m, at the summit and flank. The study found that the flanks are subject to high short-term variability in water temperature down to 1,500 m deep, consistent with an internal tide led oceanographic regime. Sensitivity assessment. Under all three scenarios (middle and high emission, and extreme scenarios), waters off the continental shelf are expected to increase marginally by approximately 1°C. The characterizing species Stichopathes gravieri, Antipathella spp., Acanthogorgia armata and Leiopathes spp. naturally occur within a range of bottom water temperatures, so are not likely to be affected by a change in bottom temperature at the pressure benchmark (a 1°C rise in temperature in the deep-sea). In particular, Leiopathes glabberima has been shown to inhabit areas subjected to natural high-frequency temperature variations of up to 1°C over periods of 20-30 minutes, 2.5 hours and 5-11 hours (Davies et al., 2010; Sánchez et al., 2014). However, evidence for one species within the family Caryophylliidae spp. (also characterizing), does show sensitivity to increased temperatures (Gori et al., 2016). Although the 3°C increase in temperature used in the study is higher than the 1°C benchmark for this pressure, significant reductions in calcification rates were observed. When subjected to both elevated pCO2 and temperature, respirations rates were significantly reduced. Hence, as Caryophylliidae spp. are potentially sensitive to changes in temperature. Therefore, resistance for this biotope is assessed as ‘Medium’, resilience as ‘Very low’ and sensitivity is assessed as ‘Medium’. | MediumHelp | Very LowHelp | MediumHelp |
Marine heatwaves (high) [Show more]Marine heatwaves (high)High emission scenario benchmark: A marine heatwave occurring every two years, with a mean duration of 120 days, and a maximum intensity of 3.5°C. Further detail. EvidenceMarine heatwaves caused by increased air-sea flux of heat are only expected to penetrate surface waters (≤ 50 m) (Cerrano et al., 2000, Garrabou et al., 2009; Dan Smale, pers. comms.). Mixed coral assemblages on Lophelia pertusa reef framework are deep-sea biotopes, relevant to the Atlantic mid and upper bathyal zone, at depths of 200 – 1300 m. Therefore, the biotope will not be affected by changes arising from marine heatwaves, and the assessment at the pressure benchmark is ‘Not relevant’. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Marine heatwaves (middle) [Show more]Marine heatwaves (middle)Middle emission scenario benchmark: A marine heatwave occurring every three years, with a mean duration of 80 days, with a maximum intensity of 2°C. Further detail. EvidenceMarine heatwaves caused by increased air-sea flux of heat are only expected to penetrate surface waters (≤ 50 m) (Cerrano et al., 2000, Garrabou et al., 2009; Dan Smale, pers. comms.). Mixed coral assemblages on Lophelia pertusa reef framework are deep-sea biotopes, relevant to the Atlantic mid and upper bathyal zone, at depths of 200 – 1300 m. Therefore, the biotope will not be affected by changes arising from marine heatwaves, and the assessment at the pressure benchmark is ‘Not relevant’. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Ocean acidification (high) [Show more]Ocean acidification (high)High emission scenario benchmark: a further decrease in pH of 0.35 (annual mean) and corresponding 120% increase in H+ ions , seasonal aragonite saturation of 20% of UK coastal waters and North Sea bottom waters, and the aragonite saturation horizon in the NE Atlantic, off the continental shelf, occurring at a depth of 400 m by the end of this century 2081-2100. Further detail EvidenceIncreasing levels of CO2 in the atmosphere have led to the average pH of sea surface waters dropping to 8.14 in the 1990s (Jacobson, 2005). By the end of this century, pH is predicted to decrease by a further 0.15 – 0.35 units depending on the emission scenario used (Bopp et al., 2013; Ostle et al., 2016), meaning surface pH could reduce to between ~7.99 to 7.79 pH units. Aragonite undersaturation is also likely to occur seasonally under the high emission scenario (Ostle et al., 2016). The mixed coral assemblage biotope is characterized by a number of different cold-water coral species, including black corals, gorgonians and scleractinians. Ocean acidification could pose a threat to these species, especially scleractinian corals such as Caryophillidae, which have a skeleton formed by aragonite (Maier et al., 2011 in Kenchington et al., 2012) and gorgonians such as Acanthogorgia armata that secrete magnesium carbonate (Kenchington et al., 2012). Cold-water coral resilience to ocean acidification has been shown to relate to their ability to increase pH within their internal calcifying fluid, which will in turn induce carbonate precipitation (McCulloch et al., 2012; Wall et al., 2015). However, it is possible that under low food supply conditions (e.g. reductions in POC (particulate organic carbon) flux), shifts in energy allocation could occur to prioritise physiological functions rather than calcification and growth (Maier et al., 2016), meaning acidification may still have a negative effect. It should be noted these studies are more specific to scleractinian corals than black corals and gorgonians. For the family Caryophylliidae, direct experimental evidence is available on the deep-sea solitary cup coral species Desmophyllum dianthus. Gori et al. (2016) found that at ambient temperatures, an elevated pCO2 of 750 ppm (relative to a 390 ppm ambient benchmark) did not cause any change in the instantaneous calcification, respiration or ammonium excretion rates of the species. When exposed to both this elevated pCO2 of 750 ppm and an elevated temperature of 15°C (relative to a 12°C ambient benchmark), respiration rates were significantly reduced. The study concluded that Desmophyllum dianthus is, therefore, more sensitive to thermal stress than pCO2 stress. This species can also be found within naturally acidic waters, where pH ranges from 8.4 to 7.4 (Fillinger & Richter, 2013). Calcification rates of other non-reef forming species within the Caryophylliidae family similarly do not appear to be affected by decreases in pH including Desmophyllum cornigera (Movilla, 2015; Rodolfo-Metalpa et al., 2015), Caryophyllia smithii (Rodolfo-Metalpa et al., 2015) and Enallopsammia rostrate (McCulloch et al., 2012). Gorgonians may be more sensitive to ocean acidification than scleractinians (FAO, 2019). A study undertaken by Carreiro-Silva et al. (in press) detailed in FAO (2019), to investigate the effects of ocean acidification on the deep-sea gorgonian Dentomuricea meteor found that the species showed a depressed metabolism and tissue necrosis. However, as this is the only study available on gorgonian species, they also highlighted the need to increase the range of deep-sea species tested for climate change impacts. In a shallow water study by Yeung et al. (2014), the areas with the highest species richness (primarily azooxanthellate octocorals, including the genus Acanthogorgia, and black corals) had a mean pH of >8.1 and a minimum pH >7.9. The areas where octocorals and black corals were rarely found were characterized by high pH (maximum pH >8.4, mean pH >8.2). However, a range of other environmental factors were also measured, so pH is unlikely to be the sole cause of this pattern. In the Gulf of Mexico, the black coral Leiopathes glaberrima was found to occur alongside Lophelia pertusa (Davies et al., 2010). ROV dives concentrated in the areas with the densest coral cover had a consistent pH throughout all the dives, with values between 7.95 and 7.97. The other ROV dives over areas of coral had pH of 8.04 to 8.10 and 7.92 to 8.01. As the oceans absorb carbon dioxide from the atmosphere, leading to a decrease in pH and an increase in acidity, the shoaling of the aragonite saturation horizon (ASH) is a further concern. The ASH is defined as the depth in the oceans at which aragonite saturation equals 1. Below this depth, aragonite saturation will fall below 1, and dissolution of calcified structures may occur. Currently the depth of the ASH in the North Atlantic is approximately 2,000 m (Jiang et al., 2015). This depth has already become 80-150 m shallower over the past two centuries (Chung et al., 2003, Feely et al., 2004). By the end of this century, the depth of the ASH is expected to become shallower still, reaching depths of up to 400 m under the high emission scenario (RCP 8.5) and 600 m for the middle emission scenario (RCP 4.5) (Zheng & Long, 2014). In addition to the shallowing of the aragonite saturation horizon, the calcite saturation horizon will also become shallower as ocean acidification occurs (Feely et al., 2004). The calcite saturation horizon is more relevant for octocorals, as they require calcium carbonate for structural development and calcite is essential in the skeletal structure (specifically for their sclerites; (Bayer & Macintyre, 2001). The black coral Stichopathes cf. abyssicola has been recorded on the Hebrides Terrace seamount in the Northeast Atlantic, where aragonite saturation levels vary from 0.77-1.40 across the seamount (Henry et al., 2015). These values were recorded at depths between 1,040-3,157 m, at the summit and flank. The study found that the flanks were subject to high short-term variability in aragonite down to 1,500 m deep, consistent with an internal tide led oceanographic regime. In the Red Sea, at depths of 240-700 m, where records of an unidentified species of Caryophyllidae occur, aragonite saturation levels were recorded as 3.44-3.61 (Roder et al., 2013). Despite these high aragonite saturation levels, the study found that calcification rates were particularly low in this species of Caryophyllidae, suggesting that other factors may limit the growth of deep-sea corals, such as low oxygen levels or limited food availability. Another Caryophyllidae species, Desmophyllum dianthus, has been recorded at deep-sea Pacific upwelling locations with aragonite saturation levels of ≤0.6, however these specimens had depleted skeletal P/Ca, which is attributed to this undersaturation effect and linked to pH levels (Anagnostou et al., 2011). The tissue layer of deep-sea corals is also noted to protect the skeleton against dissolution. However, under stress the coral may retract its polyps to expose the corallite skeleton, putting it at risk from erosion and dissolution (Lazier et al., 1999, cited in Anagnostou et al., 2011). Anagnostou et al. (2012) further suggest that Desmophyllum dianthus can partially compensate for a range of pH and aragonite saturation levels through its physiological modification mechanisms. This adaptation to low pH allows the species to enhance aragonite precipitation. In their study, specimens of Desmophyllum dianthus were from depths of 274-1,470 m in the Atlantic, Pacific and Southern Ocean, where the seawater pH ranged from 7.57-8.05 and aragonite saturation ranged from 0.6 to 2.1. Sensitivity assessment. The characterizing species Leiopathes spp. naturally occurs within a pH range of 7.95- 8.10 (Davies et al., 2010) and in shallow waters. Yeung et al. (2014) found black corals were at highest abundance at minimum pH of 7.9. As such, black corals are not likely to be affected by a change in pH at the middle emission scenario pressure benchmark (a further decrease of 0.15 to approx. 7.99) but may be affected at the high emission scenario benchmark (a further decrease of 0.35 to approx. 7.8). The black coral Stichopathes cf. abyssicola has been found at aragonite saturation levels <1. As such, this species may not be affected by shoaling of the ASH under the middle or high emission scenarios. Evidence suggests that a number of species within the family Caryophylliidae can tolerate decreases in pH (Gori et al., 2016) and some occur naturally in areas with low pH (Fillinger & Richter, 2013) and low aragonite saturations levels (Anagnostou et al., 2011). Physiological adaptions have been observed in Desmophyllum dianthus to compensate for such conditions, and the tissue layer of deep-sea corals can protect against dissolution (Anagnostou et al., 2011). As such, this genus is unlikely to be affected by ocean acidification at the middle or high emission scenarios. Kenchington et al. (2012) note that Acanthogorgia armata may be at risk from acidification due to its magnesium carbonate skeleton and Carreiro-Silva et al. (in press; detailed in Xavier et al. (2019), found that a deep-sea gorgonian species did show lower resistance to ocean acidification. Yeung et al. (2014) found highest species richness, including the genus Acanthogorgia, in areas with a minimum pH >7.9. As such, the characterizing species Acanthogorgia armata may be affected by ocean acidification at the high emission scenario but may be less affected at the middle emission scenario. Therefore, resistance for the biotope at the middle emission scenario is assessed as ‘High’, with ‘High’ resilience, with an overall sensitivity of ‘Not sensitive’. However, at the high emission scenario the biotope is assessed as ‘Medium’. Resilience is assessed as ‘Very low’ as the pressure is expected to be long-term so recovery is not possible, therefore overall sensitivity is ‘Medium’. | MediumHelp | Very LowHelp | MediumHelp |
Ocean acidification (middle) [Show more]Ocean acidification (middle)Middle emission scenario benchmark: a further decrease in pH of 0.15 (annual mean) and corresponding 35% increase in H+ ions with no coastal aragonite undersaturation and the aragonite saturation horizon in the NE Atlantic, off the continental shelf, at a depth of 800 m by the end of this century 2081-2100. Further detail. EvidenceIncreasing levels of CO2 in the atmosphere have led to the average pH of sea surface waters dropping to 8.14 in the 1990s (Jacobson, 2005). By the end of this century, pH is predicted to decrease by a further 0.15 – 0.35 units depending on the emission scenario used (Bopp et al., 2013; Ostle et al., 2016), meaning surface pH could reduce to between ~7.99 to 7.79 pH units. Aragonite undersaturation is also likely to occur seasonally under the high emission scenario (Ostle et al., 2016). The mixed coral assemblage biotope is characterized by a number of different cold-water coral species, including black corals, gorgonians and scleractinians. Ocean acidification could pose a threat to these species, especially scleractinian corals such as Caryophillidae, which have a skeleton formed by aragonite (Maier et al., 2011 in Kenchington et al., 2012) and gorgonians such as Acanthogorgia armata that secrete magnesium carbonate (Kenchington et al., 2012). Cold-water coral resilience to ocean acidification has been shown to relate to their ability to increase pH within their internal calcifying fluid, which will in turn induce carbonate precipitation (McCulloch et al., 2012; Wall et al., 2015). However, it is possible that under low food supply conditions (e.g. reductions in POC (particulate organic carbon) flux), shifts in energy allocation could occur to prioritise physiological functions rather than calcification and growth (Maier et al., 2016), meaning acidification may still have a negative effect. It should be noted these studies are more specific to scleractinian corals than black corals and gorgonians. For the family Caryophylliidae, direct experimental evidence is available on the deep-sea solitary cup coral species Desmophyllum dianthus. Gori et al. (2016) found that at ambient temperatures, an elevated pCO2 of 750 ppm (relative to a 390 ppm ambient benchmark) did not cause any change in the instantaneous calcification, respiration or ammonium excretion rates of the species. When exposed to both this elevated pCO2 of 750 ppm and an elevated temperature of 15°C (relative to a 12°C ambient benchmark), respiration rates were significantly reduced. The study concluded that Desmophyllum dianthus is, therefore, more sensitive to thermal stress than pCO2 stress. This species can also be found within naturally acidic waters, where pH ranges from 8.4 to 7.4 (Fillinger & Richter, 2013). Calcification rates of other non-reef forming species within the Caryophylliidae family similarly do not appear to be affected by decreases in pH including Desmophyllum cornigera (Movilla, 2015; Rodolfo-Metalpa et al., 2015), Caryophyllia smithii (Rodolfo-Metalpa et al., 2015) and Enallopsammia rostrate (McCulloch et al., 2012). Gorgonians may be more sensitive to ocean acidification than scleractinians (FAO, 2019). A study undertaken by Carreiro-Silva et al. (in press) detailed in FAO (2019), to investigate the effects of ocean acidification on the deep-sea gorgonian Dentomuricea meteor found that the species showed a depressed metabolism and tissue necrosis. However, as this is the only study available on gorgonian species, they also highlighted the need to increase the range of deep-sea species tested for climate change impacts. In a shallow water study by Yeung et al. (2014), the areas with the highest species richness (primarily azooxanthellate octocorals, including the genus Acanthogorgia, and black corals) had a mean pH of >8.1 and a minimum pH >7.9. The areas where octocorals and black corals were rarely found were characterized by high pH (maximum pH >8.4, mean pH >8.2). However, a range of other environmental factors were also measured, so pH is unlikely to be the sole cause of this pattern. In the Gulf of Mexico, the black coral Leiopathes glaberrima was found to occur alongside Lophelia pertusa (Davies et al., 2010). ROV dives concentrated in the areas with the densest coral cover had a consistent pH throughout all the dives, with values between 7.95 and 7.97. The other ROV dives over areas of coral had pH of 8.04 to 8.10 and 7.92 to 8.01. As the oceans absorb carbon dioxide from the atmosphere, leading to a decrease in pH and an increase in acidity, the shoaling of the aragonite saturation horizon (ASH) is a further concern. The ASH is defined as the depth in the oceans at which aragonite saturation equals 1. Below this depth, aragonite saturation will fall below 1, and dissolution of calcified structures may occur. Currently the depth of the ASH in the North Atlantic is approximately 2,000 m (Jiang et al., 2015). This depth has already become 80-150 m shallower over the past two centuries (Chung et al., 2003, Feely et al., 2004). By the end of this century, the depth of the ASH is expected to become shallower still, reaching depths of up to 400 m under the high emission scenario (RCP 8.5) and 600 m for the middle emission scenario (RCP 4.5) (Zheng & Long, 2014). In addition to the shallowing of the aragonite saturation horizon, the calcite saturation horizon will also become shallower as ocean acidification occurs (Feely et al., 2004). The calcite saturation horizon is more relevant for octocorals, as they require calcium carbonate for structural development and calcite is essential in the skeletal structure (specifically for their sclerites; (Bayer & Macintyre, 2001). The black coral Stichopathes cf. abyssicola has been recorded on the Hebrides Terrace seamount in the Northeast Atlantic, where aragonite saturation levels vary from 0.77-1.40 across the seamount (Henry et al., 2015). These values were recorded at depths between 1,040-3,157 m, at the summit and flank. The study found that the flanks were subject to high short-term variability in aragonite down to 1,500 m deep, consistent with an internal tide led oceanographic regime. In the Red Sea, at depths of 240-700 m, where records of an unidentified species of Caryophyllidae occur, aragonite saturation levels were recorded as 3.44-3.61 (Roder et al., 2013). Despite these high aragonite saturation levels, the study found that calcification rates were particularly low in this species of Caryophyllidae, suggesting that other factors may limit the growth of deep-sea corals, such as low oxygen levels or limited food availability. Another Caryophyllidae species, Desmophyllum dianthus, has been recorded at deep-sea Pacific upwelling locations with aragonite saturation levels of ≤0.6, however these specimens had depleted skeletal P/Ca, which is attributed to this undersaturation effect and linked to pH levels (Anagnostou et al., 2011). The tissue layer of deep-sea corals is also noted to protect the skeleton against dissolution. However, under stress the coral may retract its polyps to expose the corallite skeleton, putting it at risk from erosion and dissolution (Lazier et al., 1999, cited in Anagnostou et al., 2011). Anagnostou et al. (2012) further suggest that Desmophyllum dianthus can partially compensate for a range of pH and aragonite saturation levels through its physiological modification mechanisms. This adaptation to low pH allows the species to enhance aragonite precipitation. In their study, specimens of Desmophyllum dianthus were from depths of 274-1,470 m in the Atlantic, Pacific and Southern Ocean, where the seawater pH ranged from 7.57-8.05 and aragonite saturation ranged from 0.6 to 2.1. Sensitivity assessment. The characterizing species Leiopathes spp. naturally occurs within a pH range of 7.95- 8.10 (Davies et al., 2010) and in shallow waters. Yeung et al. (2014) found black corals were at highest abundance at minimum pH of 7.9. As such, black corals are not likely to be affected by a change in pH at the middle emission scenario pressure benchmark (a further decrease of 0.15 to approx. 7.99) but may be affected at the high emission scenario benchmark (a further decrease of 0.35 to approx. 7.8). The black coral Stichopathes cf. abyssicola has been found at aragonite saturation levels <1. As such, this species may not be affected by shoaling of the ASH under the middle or high emission scenarios. Evidence suggests that a number of species within the family Caryophylliidae can tolerate decreases in pH (Gori et al., 2016) and some occur naturally in areas with low pH (Fillinger & Richter, 2013) and low aragonite saturations levels (Anagnostou et al., 2011). Physiological adaptions have been observed in Desmophyllum dianthus to compensate for such conditions, and the tissue layer of deep-sea corals can protect against dissolution (Anagnostou et al., 2011). As such, this genus is unlikely to be affected by ocean acidification at the middle or high emission scenarios. Kenchington et al. (2012) note that Acanthogorgia armata may be at risk from acidification due to its magnesium carbonate skeleton and Carreiro-Silva et al. (in press; detailed in Xavier et al. (2019), found that a deep-sea gorgonian species did show lower resistance to ocean acidification. Yeung et al. (2014) found highest species richness, including the genus Acanthogorgia, in areas with a minimum pH >7.9. As such, the characterizing species Acanthogorgia armata may be affected by ocean acidification at the high emission scenario but may be less affected at the middle emission scenario. Therefore, resistance for the biotope at the middle emission scenario is assessed as ‘High’, with ‘High’ resilience, with an overall sensitivity of ‘Not sensitive’. However, at the high emission scenario the biotope is assessed as ‘Medium’. Resilience is assessed as ‘Very low’ as the pressure is expected to be long-term so recovery is not possible, therefore overall sensitivity is ‘Medium’. | HighHelp | HighHelp | Not sensitiveHelp |
Sea level rise (extreme) [Show more]Sea level rise (extreme)Extreme scenario benchmark: a 107 cm rise in average UK by the end of this century (2018-2100). Further detail. EvidenceMixed coral assemblages on Lophelia pertusa reef framework are deep-sea biotopes, relevant to the Atlantic mid and upper bathyal zone, at depths of 200 – 1300 m. Therefore, the biotope will not be affected by changes arising from sea-level rise, and the assessment at the pressure benchmark is ‘Not relevant’. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Sea level rise (high) [Show more]Sea level rise (high)High emission scenario benchmark: a 70 cm rise in average UK by the end of this century (2018-2100). Further detail. EvidenceMixed coral assemblages on Lophelia pertusa reef framework are deep-sea biotopes, relevant to the Atlantic mid and upper bathyal zone, at depths of 200 – 1300 m. Therefore, the biotope will not be affected by changes arising from sea-level rise, and the assessment at the pressure benchmark is ‘Not relevant’. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Sea level rise (middle) [Show more]Sea level rise (middle)Middle emission scenario benchmark: a 50 cm rise in average UK sea-level rise by the end of this century (2081-2100). Further detail. EvidenceMixed coral assemblages on Lophelia pertusa reef framework are deep-sea biotopes, relevant to the Atlantic mid and upper bathyal zone, at depths of 200 – 1300 m. Therefore, the biotope will not be affected by changes arising from sea-level rise, and the assessment at the pressure benchmark is ‘Not relevant’. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Hydrological Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Temperature increase (local) [Show more]Temperature increase (local)Benchmark. A 5°C increase in temperature for one month, or 2°C for one year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Temperature decrease (local) [Show more]Temperature decrease (local)Benchmark. A 5°C decrease in temperature for one month, or 2°C for one year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Salinity increase (local) [Show more]Salinity increase (local)Benchmark. A increase in one MNCR salinity category above the usual range of the biotope or habitat. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Salinity decrease (local) [Show more]Salinity decrease (local)Benchmark. A decrease in one MNCR salinity category above the usual range of the biotope or habitat. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Water flow (tidal current) changes (local) [Show more]Water flow (tidal current) changes (local)Benchmark. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2 m/s for more than one year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Emergence regime changes [Show more]Emergence regime changesBenchmark. 1) A change in the time covered or not covered by the sea for a period of ≥1 year or 2) an increase in relative sea level or decrease in high water level for ≥1 year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Wave exposure changes (local) [Show more]Wave exposure changes (local)Benchmark. A change in near shore significant wave height of >3% but <5% for more than one year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Chemical Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Transition elements & organo-metal contamination [Show more]Transition elements & organo-metal contaminationBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Hydrocarbon & PAH contamination [Show more]Hydrocarbon & PAH contaminationBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Synthetic compound contamination [Show more]Synthetic compound contaminationBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Radionuclide contamination [Show more]Radionuclide contaminationBenchmark. An increase in 10µGy/h above background levels. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Introduction of other substances [Show more]Introduction of other substancesBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
De-oxygenation [Show more]De-oxygenationBenchmark. Exposure to dissolved oxygen concentration of less than or equal to 2 mg/l for one week (a change from WFD poor status to bad status). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Nutrient enrichment [Show more]Nutrient enrichmentBenchmark. Compliance with WFD criteria for good status. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Organic enrichment [Show more] | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Physical Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Physical loss (to land or freshwater habitat) [Show more]Physical loss (to land or freshwater habitat)Benchmark. A permanent loss of existing saline habitat within the site. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Physical change (to another seabed type) [Show more]Physical change (to another seabed type)Benchmark. Permanent change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Physical change (to another sediment type) [Show more]Physical change (to another sediment type)Benchmark. Permanent change in one Folk class (based on UK SeaMap simplified classification). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Habitat structure changes - removal of substratum (extraction) [Show more]Habitat structure changes - removal of substratum (extraction)Benchmark. The extraction of substratum to 30 cm (where substratum includes sediments and soft rock but excludes hard bedrock). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Abrasion / disturbance of the surface of the substratum or seabed [Show more]Abrasion / disturbance of the surface of the substratum or seabedBenchmark. Damage to surface features (e.g. species and physical structures within the habitat). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Penetration or disturbance of the substratum subsurface [Show more]Penetration or disturbance of the substratum subsurfaceBenchmark. Damage to sub-surface features (e.g. species and physical structures within the habitat). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Changes in suspended solids (water clarity) [Show more]Changes in suspended solids (water clarity)Benchmark. A change in one rank on the WFD (Water Framework Directive) scale e.g. from clear to intermediate for one year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Smothering and siltation rate changes (light) [Show more]Smothering and siltation rate changes (light)Benchmark. ‘Light’ deposition of up to 5 cm of fine material added to the seabed in a single discrete event. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Smothering and siltation rate changes (heavy) [Show more]Smothering and siltation rate changes (heavy)Benchmark. ‘Heavy’ deposition of up to 30 cm of fine material added to the seabed in a single discrete event. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Litter [Show more]LitterBenchmark. The introduction of man-made objects able to cause physical harm (surface, water column, seafloor or strandline). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Electromagnetic changes [Show more]Electromagnetic changesBenchmark. A local electric field of 1 V/m or a local magnetic field of 10 µT. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Underwater noise changes [Show more]Underwater noise changesBenchmark. MSFD indicator levels (SEL or peak SPL) exceeded for 20% of days in a calendar year. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Introduction of light or shading [Show more]Introduction of light or shadingBenchmark. A change in incident light via anthropogenic means. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Barrier to species movement [Show more]Barrier to species movementBenchmark. A permanent or temporary barrier to species movement over ≥50% of water body width or a 10% change in tidal excursion. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Death or injury by collision [Show more]Death or injury by collisionBenchmark. Injury or mortality from collisions of biota with both static or moving structures due to 0.1% of tidal volume on an average tide, passing through an artificial structure. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Visual disturbance [Show more]Visual disturbanceBenchmark. The daily duration of transient visual cues exceeds 10% of the period of site occupancy by the feature. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Biological Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Genetic modification & translocation of indigenous species [Show more]Genetic modification & translocation of indigenous speciesBenchmark. Translocation of indigenous species or the introduction of genetically modified or genetically different populations of indigenous species that may result in changes in the genetic structure of local populations, hybridization, or change in community structure. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Introduction or spread of invasive non-indigenous species [Show more]Introduction or spread of invasive non-indigenous speciesBenchmark. The introduction of one or more invasive non-indigenous species (INIS). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Introduction of microbial pathogens [Show more]Introduction of microbial pathogensBenchmark. The introduction of relevant microbial pathogens or metazoan disease vectors to an area where they are currently not present (e.g. Martelia refringens and Bonamia, Avian influenza virus, viral Haemorrhagic Septicaemia virus). Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Removal of target species [Show more]Removal of target speciesBenchmark. Removal of species targeted by fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Removal of non-target species [Show more]Removal of non-target speciesBenchmark. Removal of features or incidental non-targeted catch (by-catch) through targeted fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail EvidenceNot assessed | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Bibliography
Anagnostou, E., Sherrell, R.M., Gagnon, A., LaVigne, M., Field, M.P. & McDonough, W.F., 2011. Seawater nutrient and carbonate ion concentrations recorded as P/Ca, Ba/Ca, and U/Ca in the deep-sea coral Desmophyllum dianthus. Geochimica et Cosmochimica Acta, 75 (9), 2529-2543. DOI https://doi.org/10.1016/j.gca.2011.02.019
Angeletti, L., Mecho, A., Doya, C., Micallef, A., Huvenne, V., Georgiopoulou, A. & Taviani, M., 2015. First report of live deep-water cnidarian assemblages from the Malta Escarpment. Italian Journal of Zoology, 1-7. DOI https://doi.org/10.1080/11250003.2015.1026416
Baker, K.D., Wareham, V.E., Snelgrove, P.V.R., Haedrich, R.L., Fifield, D.A., Edinger, E.N., Gilkinson, K.D., 2012. Distributional patterns of deep-sea coral assemblages in three submarine canyons off Newfoundland, Canada. Marine Ecology Progress Series, 445, 235–249. https://doi.org/10.3354/meps09448
Bayer, F.M., Macintyre, I.G., 2001. The mineral component of the axis and holdfast of some gorgonacean octocorals (Coelenterata: Anthozoa), with special reference to the family Gorgoniidae. Proceeding of the Biological Society of Washington, 114, 309–345.
Bo, M., Bavestrello, G., Canese, S., Giusti, M., Salvati, E., Angiolillo, M. & Greco, S., 2009. Characteristics of a black coral meadow in the twilight zone of the central Mediterranean Sea. Marine Ecology Progress Series, 397, 53-61. DOI https://doi.org/10.3354/meps08185
Bo, M., Canese, S. & Bavestrello, G., 2014. Discovering Mediterranean black coral forests: Parantipathes larix (Anthozoa: Hexacorallia) in the Tuscan Archipelago, Italy. Italian Journal of Zoology, 81 (1), 112-125. DOI https://doi.org/10.1080/11250003.2013.859750
Bo, M., Tazioli, S., Spanò, N. & Bavestrello, G., 2008. Antipathella subpinnata (Antipatharia, Myriopathidae) in Italian seas. Italian Journal of Zoology, 75 (2), 185-195. DOI https://doi.org/10.1080/11250000701882908
- Bopp, L., Resplandy, L., Orr, J.C., Doney, S.C., Dunne, J.P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T. & Seferian, R., 2013. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 10, 6225-6245. DOI http://hdl.handle.net/11858/00-001M-0000-0014-6A3A-8
- Braga-Henriques, A., Porteiro, F.M., Ribeiro, P.A., Matos, V.d., Sampaio, Í., Ocaña, O. & Santos, R.S., 2013. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic). Biogeosciences, 10 (6), 4009-4036. DOI https://doi.org/10.5194/bg-10-4009-2013
Buhl-Mortensen, L., Olafsdottir, S.H., Buhl-Mortensen, P., Burgos, J.M. & Ragnarsson, S.A., 2015. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: effects of bathymetry and hydrography. Hydrobiologia, 759 (1), 39-61. DOI https://doi.org/10.1007/s10750-014-2116-x
Carreiro-Silva, M., Andrews, A., Braga-Henriques, A., de Matos, V., Porteiro, F. & Santos, R., 2013. Variability in growth rates of long-lived black coral Leiopathes sp. from the Azores. Marine Ecology Progress Series, 473, 189-199. DOI https://doi.org/10.3354/meps10052
Cerrano, C., Bavestrello, G., Bianchi, C., Cattaneo-Vietti, R., Bava, S., Morganti, C., Morri, C., Picco, P., Sara, G., Schiaparelli, S., Siccardi, A. & Sponga, F., 2000. A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-western Mediterranean), summer 1999. Ecology Letters, 3 (4), 284-293. DOI https://doi.org/10.1046/j.1461-0248.2000.00152.x
- Chung, S.-N., Lee, K., Feely, R.A., Sabine, C.L., Millero, F.J., Wanninkhof, R., Bullister, J.L., Key, R.M. & Peng, T.-H., 2003. Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry. Global Biogeochemical Cycles, 17 (4). DOI https://doi.org/10.1029/2002gb002001
- Coppari, M., Mestice, F., Betti, F., Bavestrello, G., Castellano, L. & Bo, M., 2019. Fragmentation, re-attachment ability and growth rate of the Mediterranean black coral Antipathella subpinnata. Coral Reefs, 38 (1), 1-14. DOI https://doi.org/10.1007/s00338-018-01764-7
De Matos, V., Gomes-Pereira, J.N., Tempera, F., Ribeiro, P.A., Braga-Henriques, A. & Porteiro, F., 2014. First record of Antipathella subpinnata (Anthozoa, Antipatharia) in the Azores (NE Atlantic), with description of the first monotypic garden for this species. Deep Sea Research Part II: Topical Studies in Oceanography, 99, 113-121. DOI https://doi.org/10.1016/j.dsr2.2013.07.003
De Moura Neves, B., 2016. Growth in cold-water octocorals: rates, morphology and environmental controls. Memorial University of Newfoundland.
Deidun, A., Andaloro, F., Bavestrello, G., Canese, S., Consoli, P., Micallef, A., Romeo, T. & Bo, M., 2015. First characterisation of a Leiopathes glaberrima (Cnidaria: Anthozoa: Antipatharia) forest in Maltese exploited fishing grounds. Italian Journal of Zoology, 1-10. DOI https://doi.org/10.1080/11250003.2014.986544
Etnoyer, P.J., Wagner, D., Fowle, H.A., Poti, M., Kinlan, B., Georgian, S.E. & Cordes, E.E., 2018. Models of habitat suitability, size, and age-class structure for the deep-sea black coral Leiopathes glaberrima in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography, 150, 218-228. DOI https://doi.org/10.1016/j.dsr2.2017.10.008
- FAO (Food and Agriculture Organization of the United Nations), 2019. Deep-ocean climate change impacts on habitat, fish and fisheries. FAO Fisheries and Aquaculture Technical Paper, FAO (Fisheries and Aquaculture Organisation), Rome, No. 638. , 186 pp
Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J. & Millero, F.J., 2004. Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans. Science, 305 (5682), 362-366. DOI https://doi.org/10.1126/science.1097329
- Fillinger, L. & Richter, C., 2013. Vertical and horizontal distribution of Desmophyllum dianthus in Comau Fjord, Chile: a cold-water coral thriving at low pH. PeerJ, 1, e194. DOI https://doi.org/10.7717/peerj.194
Gaino, E. & Scoccia, F., 2010. Gamete spawning in Antipathella subpinnata (Anthozoa, Antipatharia): a structural and ultrastructural investigation. Zoomorphology, 129 (4), 213-219. DOI https://doi.org/10.1007/s00435-010-0112-x
Garrabou, J., Coma, R., Bensoussan, N., Bally, M., Chevaldonné, P., Cigliano, M., Díaz, D., Harmelin, J.-G., Gambi, M.C. & Kersting, D., 2009. Mass mortality in Northwestern Mediterranean rocky benthic communities: effects of the 2003 heat wave. Global Change Biology, 15 (5), 1090-1103.
Genin, A., Dayton, P.K., Lonsdale, P.F. & Spiess, F.N., 1986. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature, 322, 59-61. DOI https://doi.org/10.1038/322059a0
Gilkinson, K. & Edinger, E., 2009. The ecology of deep-sea corals of Newfoundland and Labrador waters: biogeography, life history, biogeochemistry, and relation to fishes. Canadian Technical Report of Fisheries and Aquatic Sciences, Department of Fisheries and Oceans, Canada, 2830, 144 pp. Available from: https://publications.gc.ca/site/eng/364680/publication.html
Gori, A., Ferrier-Pagès, C., Hennige, S.J., Murray, F., Rottier, C., Wicks, L.C. & Roberts, J.M., 2016. Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification. PeerJ, 4, e1606. DOI https://doi.org/10.7717/peerj.1606
Grange, K.R. & Singleton, R.J., 1988. Population structure of black coral, Antipathes aperta, in the southern fiords of New Zealand. New Zealand Journal of Zoology, 15 (4), 481-489. DOI https://doi.org/10.1080/03014223.1988.10422628
Grange, K.R., 1988. Redescription of Antipathes aperta, Totton, (Coelenterata: Antipatharia), an ecological dominant in the southern fiords of New Zealand. New Zealand Journal of Zoology, 15 (1), 55-61. DOI https://doi.org/10.1080/03014223.1988.10422609
Henry, L.-A., Vad, J., Findlay, H.S., Murillo, J., Milligan, R. & Roberts, J.M., 2015. Environmental variability and biodiversity of megabenthos on the Hebrides Terrace Seamount (Northeast Atlantic). Scientific reports, 4 (1). DOI https://doi.org/10.1038/srep05589
Hughes, D.J. & Narayanaswamy, B.E., 2013. Impacts of climate change on deep-sea habitats. MCCIP Science Review, 2013, 204-210.
Jacobson, M.Z., 2005. Studying ocean acidification with conservative, stable numerical schemes for nonequilibrium air-ocean exchange and ocean equilibrium chemistry. Journal of Geophysical Research: Atmospheres, 110 (D7). DOI https://doi.org/10.1029/2004JD005220
- Jiang, L.-Q., Feely, R.A., Carter, B.R., Greeley, D.J., Gledhill, D.K. & Arzayus, K.M., 2015. Climatological distribution of aragonite saturation state in the global oceans. Global Biogeochemical Cycles, 29 (10), 1656-1673. DOI https://doi.org/10.1002/2015gb005198
JNCC (Joint Nature Conservation Committee), 2022. The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/
Johnson, M.P., White, M., Wilson, A., Würzberg, L., Schwabe, E., Folch, H. & Allcock, A.L., 2013. A Vertical Wall Dominated by Acesta excavata and Neopycnodonte zibrowii, Part of an Undersampled Group of Deep-Sea Habitats. PLOS ONE, 8 (11), e79917. DOI https://doi.org/10.1371/journal.pone.0079917
- Kenchington, E., Siferd, T. & Lirette, C., 2012. Arctic Marine Biodiversity: Indicators for Monitoring Coral and Sponge Megafauna in the Eastern Arctic. Canadian Science Advisory Secretariat, Research Document 2012/003, 43 pp
- Love, M.S., Yoklavich, M.M., Black, B.A. & Andrews, A.H., 2007. Age of black coral (Antipathes dendrochristos) colonies, with notes on associated invertebrate species. Bulletin of Marine Science, 80 (2), 391-399.
Maier, C., Popp, P., Sollfrank, N., Weinbauer, M.G., Wild, C. & Gattuso, J.-P., 2016. Effects of elevated CO2 and feeding on net calcification and energy budget of the Mediterranean cold-water coral Madrepora oculata. The Journal of Experimental Biology, 219 (20), 3208-3217. DOI https://doi.org/10.1242/jeb.127159
McCulloch, M., Trotter, J., Montagna, P., Falter, J., Dunbar, R., Freiwald, A., Försterra, G., López Correa, M., Maier, C., Rüggeberg, A. & Taviani, M., 2012. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochimica et Cosmochimica Acta, 87, 21-34. DOI https://doi.org/10.1016/j.gca.2012.03.027
Miller, K.J., 1997. Genetic structure of black coral populations in New Zealand's fiords. Marine Ecology Progress Series, 161, 123-132. DOI https://doi.org/10.3354/meps161123
- Miller, K.J., 1998. Short-distance dispersal of black coral larvae: inference from spatial analysis of colony genotypes. Marine Ecology Progress Series, 163, 225-233
Mortensen, P.B. & Buhl-Mortensen, L., 2004. Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Marine Biology, 144 (6), 1223-1238. DOI https://doi.org/10.1007/s00227-003-1280-8
Movilla, J.I., 2015. Effects of Ocean Acidification on Mediterranean Corals. Universidad de Las Palmas de Gran Canaria.
Mullins, H.T., Newton, C.R., Heath, K. & Vanburen, H.M., 1981. Modern deep-water coral mounds north of Little Bahama Bank: criteria for recognition of deep-water coral bioherms in the rock record. Journal of Sedimentary Research, 51 (3).
- Ocaña, O., Opresko, D.M. & Brito, A., 2006. First record of the black coral Antipathella wollastoni (Anthozoa: Antipatharia) outside of Macaronesian waters. Revista de la Academia Canaria de Ciencias, 18 (4), 125-138
- Opresko, D., 2001. Revision of the Antipatharia (Cnidaria: Anthozoa). Part I. Establishment of a new family, Myriopathidae. Zoologische Mededelingen Leiden, 75
Ostle, C., Artioli, Y., Bakker, D., Birchenough, S., Davis, C., Dye, S., Edwards, M., Findlay, H., Greenwood, N., Hartman, S.E., Humphreys, M., Jickells, T., Johnson, M., Landschützer, P., Parker, E., Pearce, D., Pinnegar, J., Robinson, C., Schuster, U. & Williamson, P., 2016. Carbon dioxide and ocean acidification observations in UK waters: Synthesis report with a focus on 2010 - 2015. DOI https://doi.org/10.13140/RG.2.1.4819.4164
Parker, N.R., Mladenov, P.V. & Grange, K.R., 1997. Reproductive biology of the antipatharian black coral Antipathes fiordensis in Doubtful Sound, Fiordland, New Zealand. Marine Biology, 130 (1), 11-22. DOI https://doi.org/10.1007/s002270050220
Prouty, N., Roark, E., Buster, N. & Ross, S., 2011. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico. Marine Ecology Progress Series, 423, 101-115. DOI https://doi.org/10.3354/meps08953
Qurban, M.A., Krishnakumar, P.K., Joydas, T.V., Manikandan, K.P., Ashraf, T.T.M., Quadri, S.I., Wafar, M., Qasem, A. & Cairns, S.D., 2014. In-situ observation of deep water corals in the northern Red Sea waters of Saudi Arabia. Deep Sea Research Part I: Oceanographic Research Papers, 89, 35-43. DOI https://doi.org/10.1016/j.dsr.2014.04.002
Rakka, M., Orejas, C., Sampaio, I., Monteiro, J., Parra, H. & Carreiro-Silva, M., 2017. Reproductive biology of the black coral Antipathella wollastoni (Cnidaria: Antipatharia) in the Azores (NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography, 145, 131-141. DOI https://doi.org/10.1016/j.dsr2.2016.05.011
Roark, E.B., Guilderson, T.P., Dunbar, R.B., Fallon, S.J. & Mucciarone, D.A., 2009. Extreme longevity in proteinaceous deep-sea corals. Proceedings of the National Academy of Sciences, 106 (13), 5204-5208. DOI https://doi.org/10.1073/pnas.0810875106
- Roark, E.B., Thomas, P.G., Robert, B.D. & Ingram, B.L., 2006. Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Marine Ecology Progress Series, 327, 1-14
- Roberts, C.M., 2002d. Deep impact: the rising toll of fishing in the deep sea. Trends in Ecology & Evolution, 17 (5), 242-245. 10.1016/S0169-5347(02)02492-8
Roberts, J., Wheeler, A., Freiwald, A. & Cairns, S., 2009. Cold Water Corals: The Biology and Geology of Deep-Sea Coral Habitats. Cambridge University Press, 1-350. DOI https://doi.org/10.1017/CBO9780511581588
Roder, C., Berumen, M.L., Bouwmeester, J., Papathanassiou, E., Al-Suwailem, A. & Voolstra, C.R., 2013. First biological measurements of deep-sea corals from the Red Sea. Scientific reports, 3 (1). DOI: https://doi.org/10.1038/srep02802
Rodolfo-Metalpa, R., Montagna, P., Aliani, S., Borghini, M., Canese, S., Hall-Spencer, J.M., Foggo, A., Milazzo, M., Taviani, M. & Houlbrèque, F., 2015. Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Global Change Biology, 21 (6), 2238-2248. DOI https://doi.org/10.1111/gcb.12867
Ruiz-Ramos, D.V., Saunders, M., Fisher, C.R. & Baums, I.B., 2015. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima. PLOS ONE, 10 (10), e0138989. DOI https://doi.org/10.1371/journal.pone.0138989
- Sánchez, F., González-Pola, C., Druet, M., García-Alegre, A., Acosta, J., Cristobo, J., Parra, S., Ríos, P., Altuna, Á., Gómez-Ballesteros, M., Muñoz-Recio, A., Rivera, J. & del Río, G.D., 2014. Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea). Deep Sea Research Part II: Topical Studies in Oceanography, 106, 118-140. DOI https://doi.org/10.1016/j.dsr2.2013.12.014
Sampaio, í., Braga-Henriques, A., Pham, C., Ocaña, O., de Matos, V., Morato, T. & Porteiro, F.M., 2012. Cold-water corals landed by bottom longline fisheries in the Azores (north-eastern Atlantic). Journal of the Marine Biological Association of the United Kingdom, 92 (07), 1547-1555. DOI https://doi.org/10.1017/S0025315412000045
Tsounis, Orejas, C., Reynaud, S., Gili, J.-M., Allemand, D. & Ferrier-Pagès, C., 2010. Prey-capture rates in four Mediterranean cold water corals. Marine Ecology Progress Series, 398, 149-153. DOI https://doi.org/10.3354/meps08312
- Van Praet, M., Rice, A.L. & Thurston, M.H., 1990. Reproduction in two deep-sea anemones (Actiniaria); Phelliactis hertwigi and P. robusta. Progress in Oceanography, 24 (1-4), 207-222
- Wagner, D., Waller, R.G. & Toonen, R.J., 2011. Sexual reproduction of Hawaiian black corals, with a review of the reproduction of antipatharians (Cnidaria: Anthozoa: Hexacorallia): Reproduction of Hawaiian black corals. Invertebrate Biology, 130 (3), 211-225. DOI https://doi.org/10.1111/j.1744-7410.2011.00233.x
- Wagner, D., Waller, R.G., Montgomery, A.D., Kelley, C.D. & Toonen, R.J., 2012. Sexual reproduction of the Hawaiian black coral Antipathes griggi (Cnidaria: Antipatharia). Coral Reefs, 31 (3), 795-806. DOI https://doi.org/10.1007/s00338-012-0882-3
- Wall, M., Ragazzola, F., Foster, L.C., Form, A. & Schmidt, D.N., 2015. pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa to sustain growth in aragonite undersaturated conditions. Biogeosciences, 12 (23), 6869-6880. DOI https://doi.org/10.5194/bg-12-6869-201
Wareham, V.E. & Edinger, E.N., 2007. Distribution of deep-sea corals in the Newfoundland and Labrador region, Northwest Atlantic Ocean. Bulletin of Marine Science, 81 (3), 289-313.
- Xavier, J.R., Carreiro-Silva, M., Colaço, A., Le Bris, N. & Levin, L., 2019. Vulnerabilities: invertebrate taxa (indicators for vulnerable marine ecosystems. Deep-ocean climate change impacts on habitat, fish and fisheries: Food and Agriculture Organization of the United Nations, pp. 147-152
- Yesson, C., Bedford, F., Rogers, A.D. & Taylor, M.L., 2017. The global distribution of deep-water Antipatharia habitat. Deep Sea Research Part II: Topical Studies in Oceanography, 145, 79-86. DOI https://doi.org/10.1016/j.dsr2.2015.12.004
Yeung, C.W., Cheang, C.C., Lee, M.W., Fung, H.L., Chow, W.K. & Ang, P., 2014. Environmental variabilities and the distribution of octocorals and black corals in Hong Kong. Marine Pollution Bulletin, 85 (2), 774-782. DOI https://doi.org/10.1016/j.marpolbul.2013.12.043
Zheng, M.-D. & Long, C., 2014. Simulation of global ocean acidification and chemical habitats of shallow- and cold-water coral reefs. Advances in Climate Change Research, 5 (4), 189-196. DOI https://doi.org/10.1016/j.accre.2015.05.002
Citation
This review can be cited as:
Last Updated: 22/11/2019