Verrucaria maura on littoral fringe rock
Researched by | Dr Harvey Tyler-Walters | Refereed by | Admin |
---|
Summary
UK and Ireland classification
Description
Bedrock or stable boulders and cobbles in the littoral fringe covered by the black lichen Verrucaria maura. This lichen typically covers the entire rock surface giving a distinct black band in the upper littoral fringe. The winkle Littorina saxatilis is usually present. The biotope LR.FLR.Lic.Ver includes two variants, LR.FLR. Lic.Ver.Ver and LR.FLR. Lic.Ver.B, which both occur in a wide range of wave exposures.
LR.FLR. Lic.Ver.Ver is characteristic of upper littoral fringe bedrock, boulders and stable cobbles on very exposed to very sheltered shores which have a blanket covering of the black lichen Verrucaria maura. The biotope is a species-poor community consisting mainly of Verrucaria maura and Littorina saxatilis (Ver.Ver) but occasionally a range of species may be present in low abundance. These species include the yellow lichen Caloplaca marina and the winkle Melarhaphe neritoides, the barnacles Chthamalus montagui and Semibalanus balanoides or the ephemeral seaweeds Porphyra umbilicalis and Ulva spp. can be present in low abundance (see Ver.B). On northern shores Littorina saxatilis var. rudis can dominate along with the occasional presence of the lichens Verrucaria mucosa and Xanthoria parietina. Verrucaria mucosa can be found overlying stable mud in Northern Ireland sea loughs.
LR.FLR.Lic.Ver.B is characteristic of the lower littoral fringe of very exposed to moderately exposed rocky shores that have a sparse covering of the barnacles Semibalanus balanoides and/or Chthamalus montagui over the black lichen Verrucaria maura. Winkles Littorina saxatilis and Melarhaphe neritoides are usually present although Melarhaphe neritoides tends to be found on more exposed shores. The limpet Patella vulgata is often present although at a low abundance. Ver.B. can be dominated by ephemeral seaweeds including the red seaweed Porphyra umbilicalis, the green seaweeds Ulva spp. or, particularly in the north, microscopic blue-green algae (Cyanophyceae), which overgrow Verrucaria maura. The wrack Pelvetia canaliculata may also be present, becoming increasingly more common with greater shelter (see PelB). On northern and eastern shores the barnacle is usually Semibalanus balanoides, which is normally restricted to the lower littoral fringe, with a band of Verrucaria maura only in the upper littoral fringe (Ver.Ver). On south-west and western shores, the barnacle is usually Chthamalus montagui which may extend over the whole of the littoral fringe zone. Ver.B also occurs on vertical faces of moderately exposed shores where the Pelvetia canaliculata biotope (PelB) usually dominates on non-vertical faces.
The black lichen zone (Ver) is normally found below the yellow and grey lichen zone (YG). In very sheltered areas there is not always a clear transition from one zone to the next and a mixed zone of YG and Ver.Ver is common. The Pelvetia canaliculata can occur on these more sheltered shores. With increasing wave exposure the two black lichen zones become wider and more distinct, and the Ver.Ver gives way to a lichen and barnacle dominated community (Ver.B) in the lower littoral fringe (Information adapted from Connor et al., 2004; JNCC, 2015).
Depth range
Upper shoreAdditional information
The available evidence, for most pressures, does not distinguish between the biotope LR.FLR.Lic.Ver and its sub-biotopes LR.FLR.Lic.Ver.Ver and LR.FLR. Lic.Ver.B. Therefore, the information is presented at the biotope level LR.FLR.Lic.Ver with some differentiation between the biotopes where appropriate. Unless otherwise indicated all assessments are considered to apply to all the biotopes within the biotope complex.
Listed By
Sensitivity review
Sensitivity characteristics of the habitat and relevant characteristic species
The biotope LR.FLR.Lic.Ver and its sub-biotopes LR.FLR.Lic.Ver.Ver and LR.FLR. Lic.Ver.B are characterized by the abundance of the black lichen Verrucaria maura. A significant reduction in the abundance of Verrucaria maura, or its loss, would result in loss of the biotopes. Littorina saxatilis is also a characterizing species but it is mobile, not dependent on Verrucaria maura for habitat, and common in the upper to lower littoral fringe, the upper eulittoral and upper shore rockpools and crevices. If Littorina saxatilis was removed it would probably return quickly. The barnacles that characterize Ver.B reach their upper shore limit in Ver.B and are probably more sensitive to change in this biotope than in barnacle dominant biotopes. Similarly, many of the macroalgae that occur are transient or opportunistic (e.g. Porphyra spp., Ulva spp.) and the gastropod fauna are mobile (e.g. Patella) or restricted to crevices (e.g. Melarhaphe neritoides). Kronberg (1988) recorded numerous species from the littoral 'black' zone in Europe but noted that the communities were generally species-poor and that most species were mobile, feeding in the 'black' zone temporally, before returning to the more marine or terrestrial regions of origin or to refuges in crevices. Therefore, Verrucaria maura is the only species required to recognize these biotopes (Ver, Ver.Ver and Ver.B) and the only species that indicates the sensitivity of this habitat.
Resilience and recovery rates of habitat
Sexual spores and asexual propagules of lichens are probably widely dispersed by the wind and mobile invertebrates while the microalgal symbionts are probably ubiquitous. Lichen growth rates are low, rarely more than 0.5-1 mm/year in crustose species while foliose species may grow up to 2-5 mm/year. For example, crustose lichens were reported to show radial increases of 0.1 mm/month while foliose species grow at 0.4-0.7 mm/month (Fletcher, 1980); Lichina pygmaea was reported to grow 3-6 cm/year at one site but only 0.5 mm/year at others (Fletcher, 1980). Dethier & Steneck (2001) recorded a maximum growth rate of 2 mm/year for Verrucaria mucosa in the laboratory. However, lichen growth rates varied widely between different locations, between different species and even between different thalli of the same species at the same site (Fletcher, 1980; Sancho et al., 2007). Cullinane et al. (1975) noted that many of the lichens lost due to an oil spill in Bantry Bay were probably 20-50 years old, based on their size, and lifespans of lichens have been estimated to be 100 years or more (Jones et al., 1974) and possibly up to 7000 years in the Antarctic (Sancho et al., 2007). However, lichen growth rates vary widely and many but not all lichens of extreme climates have slow growth rates. The highest growth rates are recorded in moist coastal-influenced regions, and lichens from temperature, tropical or sub-tropical areas may grow between a few millimetres to a few centimetres per year (Honeggar, 2008). Honeggar (2008) suggested that longevity in lichens required critical interpretation.
Fletcher (1980) suggested that newly exposed substratum needs to be modified by weathering and that initiation of the new thallus is thought to take several years. Rolan & Gallagher (1991) reported that Verrucaria spp. populations were destroyed on the upper shore, 'cleaned' by bulldozing at one site in Sullom voe after the Esso Bernica oil spill in 1978. At another site, Verrucaria maura was recorded on loose rocks in the littoral, rocks that were presumed to be displaced from the upper shore. Rolan & Gallagher (1991) also reported that lichens recovered within a year or two at four cleared sites, but did not specify the lichen species in question or whether they were littoral or supralittoral species. Crump & Moore (1997) observed that lichens had not colonized experimentally cleared substrata within 12 months. Moore (2006) reported that areas of bare rock (left after rock slices were removed by high-pressure water cleaning) showed no signs of recruitment by Verrucaria maura until 6 years after the Sea Empress oil spill, and that new colonies had grown to 2 mm in diameter 3 years later (9 years after the spill), and provided 'appreciable cover'.
Resilience assessment. Mobile invertebrate fauna and opportunistic macroalgae will probably recolonize rapidly. Little information on the growth rate of Verrucaria maura was found, although if similar to Verrucaria mucosa (a maximum of 2 mm/year) growth is slow. Evidence from Moore (2006) suggests that Verrucaria maura recolonize bare rock within 6 years and develop 'appreciable' cover within 9 years. Where the cover of Verrucaria maura is reduced or damaged regrowth is likely, but recovery is likely to take between 2 and 10 years depending on location and assuming growth rates vary. Similarly, it may colonize and reach 'appreciable cover' on bare rock within 10 years. Therefore, resilience would be assessed as 'Medium'. However, although the Ver.B. biotope is characterized by Verrucaria maura cover and bare rock, Ver and Ver.Ver are characterized by almost complete cover.
Hydrological Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Temperature increase (local) [Show more]Temperature increase (local)Benchmark. A 5°C increase in temperature for one month, or 2°C for one year. Further detail EvidenceMarine lichens are exposed to extremes of temperature from hot, dry summers to cold, frosty winters. Fletcher (1980) noted that few studies implicated high or low temperatures as a factor affecting seashore lichens, but that changes in temperature affect water relations. Increased temperature may increase desiccation (see emergence) although, other factors are involved, such as wind and wave action, precipitation, sunlight and shading. Fletcher (1980) suggested that the effect of temperature on littoral lichens was inconclusive. For example, Verrucaria maura is abundant on both sunny and shaded shores but is considered a shade tolerant plant from North Africa to France and in Scandinavia. Reid (1969; cited in Fletcher, 1980) reported that Verrucaria mucosa had the similar temperature resistance to the algae with which it is ecologically associated but that Verrucaria maura was even less resistant. However, Fletcher (1980) also suggested that temperature was an important factor for water conservation, in combination with insolation, shade and wind, emersion and precipitation. Sensitivity assessment. The 'black lichen zone' (Ver) experiences the extremes of hot summers and cold frosty winters and is, therefore, adapted to extreme variation in temperature. It also occurs from North Africa to Scandinavia, so that it is unlikely to be adversely affected by changes in temperature at the benchmark level within Britain and Ireland. Therefore, a resistance of High is suggested. Resilience is, therefore, likely to be High, and the biotope has been assessed as Not sensitive at the benchmark level. Ellis et al. (2007) modelled the effect of climate change scenarios on selected terrestrial lichens and identified potential threats to Northern montane and Boreal species, and uncertainties in the fate of species typical of the Atlantic coast margin, but no information on littoral species was found. | HighHelp | HighHelp | Not sensitiveHelp |
Temperature decrease (local) [Show more]Temperature decrease (local)Benchmark. A 5°C decrease in temperature for one month, or 2°C for one year. Further detail EvidenceMarine lichens are exposed to extremes of temperature from hot, dry summers to cold, frosty winters. Fletcher (1980) noted that few studies implicated high or low temperatures as a factor affecting seashore lichens, but that changes in temperature affect water relations. Increased temperature may increase desiccation (see emergence) although, other factors are involved, such as wind and wave action, precipitation, sunlight and shading. Fletcher (1980) suggested that the effect of temperature on littoral lichens was inconclusive. For example, Verrucaria maura is abundant on both sunny and shaded shores but is considered a shade tolerant plant from North Africa to France and in Scandinavia. Reid (1969; cited in Fletcher, 1980) reported that Verrucaria mucosa had the similar temperature resistance to the algae with which it is ecologically associated but that Verrucaria maura was even less resistant. However, Fletcher (1980) also suggested that temperature was an important factor for water conservation, in combination with insolation, shade and wind, emersion and precipitation. Sensitivity assessment. The 'black lichen zone' (Ver) experiences the extremes of hot summers and cold frosty winters and is, therefore, adapted to extreme variation in temperature. It also occurs from North Africa to Scandinavia, so that it is unlikely to be adversely affected by changes in temperature at the benchmark level within Britain and Ireland. Therefore, a resistance of High is suggested. Resilience is, therefore, likely to be High, and the biotope has been assessed as Not sensitive at the benchmark level. Ellis et al. (2007) modelled the effect of climate change scenarios on selected terrestrial lichens and identified potential threats to Northern montane and Boreal species, and uncertainties in the fate of species typical of the Atlantic coast margin, but no information on littoral species was found. | HighHelp | HighHelp | Not sensitiveHelp |
Salinity increase (local) [Show more]Salinity increase (local)Benchmark. A increase in one MNCR salinity category above the usual range of the biotope or habitat. Further detail EvidenceThe littoral fringe is likely to experience localised evaporation and a resultant increase in surface salinity during neap and low tides in hot summers and/or warm windy conditions. Fletcher (1980) noted that marine lichens in the lower littoral fringe died out in waters less than 20‰ while upper littoral fringe lichens were found in waters of 4-20‰ salinity. However, Fletcher (1980) commented that loss of littoral lichens in estuaries can also be attributed to changes in pH, silt, reduced tidal range, and reduced wave exposure. Overall, littoral lichens receive regular inundation by seawater, unlike the supralittoral, and may not experience the extremes of salt spray. Nevertheless, there is not enough evidence to assess their sensitivity to hypersaline conditions. | Not relevant (NR)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Salinity decrease (local) [Show more]Salinity decrease (local)Benchmark. A decrease in one MNCR salinity category above the usual range of the biotope or habitat. Further detail EvidenceThe littoral fringe is likely to experience localised evaporation and a resultant increase in surface salinity during neap and low tides in hot summers and/or warm windy conditions. Conversely, it is exposed to rainfall and freshwater runoff during low and neap tides. Fletcher (1980) noted that marine lichens in the lower littoral fringe died out in waters less than 20‰ while upper littoral fringe lichens were found in waters of 4-20‰ salinity. However, Fletcher (1980) commented that loss of littoral lichens in estuaries can also be attributed to changes in pH, silt, reduced tidal range, and reduced wave exposure. Overall, the limited evidence suggests that littoral lichens would be adversely affected by a reduction of salinity, for example from full to reduced and a resistance of 'Low' is suggested but at 'Low' confidence. Resilience is probably 'Medium', therefore, a sensitivity of 'Medium' is recorded.
| LowHelp | MediumHelp | MediumHelp |
Water flow (tidal current) changes (local) [Show more]Water flow (tidal current) changes (local)Benchmark. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2 m/s for more than one year. Further detail EvidenceThe littoral fringe is unlikely to be affected by changes in water flow as described in the pressure benchmark. Runoff due to heavy rainfall is possible but is outside the scope of the pressure. Therefore, the pressure is Not relevant. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Emergence regime changes [Show more]Emergence regime changesBenchmark. 1) A change in the time covered or not covered by the sea for a period of ≥1 year or 2) an increase in relative sea level or decrease in high water level for ≥1 year. Further detail EvidenceThe emergence regime, that is the time covered or uncovered by the tide, is likely to change the frequency of drying and wetting of lichens, especially on sheltered shores. Fletcher (1980) noted that littoral lichens are emersed for several weeks during neap tides, during which time they are exposed to the hottest and dryest periods in summer and the coldest and most frost-prone periods in winter. The levels of moisture and relative duration of wet and dry periods are the most important factors controlling vertical zonation in marine lichens. Rates of evaporation and hence desiccation is dependent on the slope and drainage of the shore, the rock type and its porosity, temperature and hence insolation and aspect, and wind exposure. Any activity that changes the exposure of the shore to wind, wave, rain or sunlight is likely to affect littoral lichen communities.
Sensitivity assessment. Water relations (Fletcher 1980) are vital to the zonation of marine lichens and the 'black lichen belt' exists in a distinct balance between immersion and emersion. A decrease in emersion (increased inundation) would probably allow the 'black lichen belt' to extend up the shore (where suitable substratum exists) and replace supralittoral lichens at the bottom of the supralittoral. However, the lower littoral fringe would probably be lost to competition from macroalgae or barnacles, depending on the exposure of the shore. Conversely, an increase in emersion (reduced inundation) would probably result in loss of the upper limit of the Verrucaria maura belt and its replacement by supralittoral lichens typical of the yellow-orange belt (e.g. Caloplaca spp.). Therefore, a decrease in emersion is likely to result is a slow shift in the biotope up the shore but an increase in emergence is likely to result in a rapid loss of Verrucaria spp. at its upper limit, based on observations by Fletcher (1976; cited in Fletcher, 1980). Hence, a resistance of Low is suggested. As resilience is probably Medium, a sensitivity of Medium is recorded. | LowHelp | MediumHelp | MediumHelp |
Wave exposure changes (local) [Show more]Wave exposure changes (local)Benchmark. A change in near shore significant wave height of >3% but <5% for more than one year. Further detail EvidenceLR.FLR.Lic.Ver and Ver.Ver are recorded from very wave exposed to very wave sheltered conditions while Ver.B his only recorded from wave exposed conditions (Connor et al., 2004). The 'black lichen band' tends to be wider in more wave exposed conditions, as the influence of wave action and splash are carried further up the shore. Therefore, changes in wave exposure may either increase or decrease the width of the 'black lichen band' depending on the nature of the shore. The extent of the band (especially Ver.B.) may extend on sheltered shore exposed to increase wave action but be reduced on wave exposed shores where the wave action is reduced, which suggests a Low resistance to change. Ver.B may be particularly sensitive to reduced wave exposure as it is only recorded from wave exposed shores. However, a change in significant wave height of 3-5% (the benchmark) is probably not significant on wave exposed shores, and might only be of minor benefit in the long-term on very sheltered shores. Therefore, a resistance of High is recorded, so that, a resilience of High and sensitivity of Not sensitive are recorded at the benchmark level. | HighHelp | HighHelp | Not sensitiveHelp |
Chemical Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Transition elements & organo-metal contamination [Show more]Transition elements & organo-metal contaminationBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceLichens are known indicators of heavy metals in the environment, especially iron (Seaward, 2008). Seashore lichens often indicate environmental concentrations of heavy metals or accumulate them, frequently to very high levels (Fletcher, 1980). The accumulation of high levels of heavy metals may deter grazers (Gerson & Seaward, 1977). For example, Verrucaria maura was reported to accumulate Fe to 2.5 million times over the concentration in seawater, and Zn by a factor of 8000. Some species accumulate lead (Pb) to 100 ppm and cadmium (Cd) to 2 ppm of thallus dry weight (Fletcher, 1980). Heavy metals may be derived from rainfall, and dust as well as seawater (Fletcher, 1980). Gerson & Seaward (1977) noted that accumulated heavy metals could potentially accumulate up lichen-based food webs, e.g. the lichen to caribou to man food chain in Alaska. However, no information on bioaccumulation through littoral lichen communities was found. Overall, the ability of lichens to accumulate heavy metals to such high levels suggests a 'High' resistance to the heavy metal ions studied. Therefore, the lichen community is probably 'Not sensitive to heavy metal contamination. | HighHelp | HighHelp | Not sensitiveHelp |
Hydrocarbon & PAH contamination [Show more]Hydrocarbon & PAH contaminationBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceThis pressure is Not assessed but evidence is presented where available. Several studies have documented the effects of oil spills on marine lichen communities, although in many cases is difficult to separate the effects of oiling from the effects of dispersants.
| Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Synthetic compound contamination [Show more]Synthetic compound contaminationBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceThis pressure is Not assessed but evidence is presented where available. Several studies have documented the effects of oil spills on supralittoral lichen communities, although in many cases is difficult to separate the effects of oiling from the effects of dispersants. Most studies concluded that the decontamination methods, (including dispersants) were more toxic to lichens than the oil itself (see Hydrocarbon and PAH contamination above).
| Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Radionuclide contamination [Show more]Radionuclide contaminationBenchmark. An increase in 10µGy/h above background levels. Further detail EvidenceLichens have also been reported to accumulate radionuclides in a similar manner to other heavy metals (see above) (Gerson & Seaward, 1977; Fletcher, 1980). Radionuclides could potentially accumulate up food webs based on lichen species, however, no further evidence was found. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Introduction of other substances [Show more]Introduction of other substancesBenchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail EvidenceThis pressure is Not assessed. | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
De-oxygenation [Show more]De-oxygenationBenchmark. Exposure to dissolved oxygen concentration of less than or equal to 2 mg/l for one week (a change from WFD poor status to bad status). Further detail EvidenceThe littoral fringe is rarely inundated and is often exposed to the air. For example, Fletcher (1980) noted that Lichina confinis, a species that occurs at the top of the littoral fringe, spent a maximum of 1% of time submerged each year while Verrucaria striatula, a species that occurs in the lower littoral fringe below the Verrucaria maura, spent a maximum of 44% of time submerged each year. Therefore, the 'black lichen belt' characterized by Ver.Ver and Ver.B are exposed to the air for the majority of the time. Even if the water lapping over the littoral fringe was deoxygenated, wave action and turbulent flow over the rock surface would probably aerate the water column. Hence, the biotope is unlikely to be exposed to deoxygenated conditions.
| Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Nutrient enrichment [Show more]Nutrient enrichmentBenchmark. Compliance with WFD criteria for good status. Further detail EvidenceNutrient levels are a determining factor in supralittoral lichen zonation (Fletcher, 1980) but the evidence of the importance of nutrient in the in the littoral fringe is less clear. Wootton (1991) examined the effects of bird guano on rocky shore lichens in the San Juan archipelago, Washington. Verrucaria mucosa cover declined in areas affected by guano but the decline was only significant in wave exposed sites where the cover of Prasiola meridionalis increased. Connor et al. (2004) noted that Prasiola and opportunistic algae (e.g. Ulva and Porphyra) grow over the Verrucaria belt. However, no evidence on the effects on Verrucaria maura was found. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Organic enrichment [Show more]Organic enrichmentBenchmark. A deposit of 100 gC/m2/yr. Further detail EvidenceNutrient levels are a determining factor in supralittoral lichen zonation (Fletcher, 1980) but the evidence of the importance of nutrient in the in the littoral fringe is less clear. Wootton (1991) examined the effects of bird guano on rocky shore lichens in the San Juan archipelago, Washington. Verrucaria mucosa cover declined in areas affected by guano but was only significant in wave exposed sites where the cover of Prasiola meridionalis increased. Guano provides nitrates, phosphates, potassium and some salts (Wootton, 1991) but may introduce some organic material. In addition, organic-rich runoff, e.g. from agriculture and livestock, could introduce organic carbon to the littoral fringe. Organic-rich runoff would probably result in Prasiola growth over the 'black lichen belt', where wave exposure allowed. However, no direct evidence on the effects of organic enrichment in the littoral fringe was found and no sensitivity assessment was made. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Physical Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Physical loss (to land or freshwater habitat) [Show more]Physical loss (to land or freshwater habitat)Benchmark. A permanent loss of existing saline habitat within the site. Further detail EvidenceAll marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very low’). Sensitivity within the direct spatial footprint of this pressure is, therefore ‘High’. Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure. | NoneHelp | Very LowHelp | HighHelp |
Physical change (to another seabed type) [Show more]Physical change (to another seabed type)Benchmark. Permanent change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa. Further detail EvidenceThe lichen community typical of this biotope is only found on hard substrata and dominates rocks in the littoral fringe. A change to a sedimentary substratum, however unlikely, would result in the permanent loss of the biotope. Therefore, the biotope has a resistance of 'None', with a 'Very low' resilience (as the effect is permanent) and, therefore, a sensitivity of 'High'. Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure. | NoneHelp | Very LowHelp | HighHelp |
Physical change (to another sediment type) [Show more]Physical change (to another sediment type)Benchmark. Permanent change in one Folk class (based on UK SeaMap simplified classification). Further detail EvidenceNot Relevant on hard rock biotopes. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Habitat structure changes - removal of substratum (extraction) [Show more]Habitat structure changes - removal of substratum (extraction)Benchmark. The extraction of substratum to 30 cm (where substratum includes sediments and soft rock but excludes hard bedrock). Further detail EvidenceNot Relevant on hard rock biotopes. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Abrasion / disturbance of the surface of the substratum or seabed [Show more]Abrasion / disturbance of the surface of the substratum or seabedBenchmark. Damage to surface features (e.g. species and physical structures within the habitat). Further detail EvidenceFletcher (1980) reported that the species diversity of lichens decreased in areas subject to mechanical damage, such as trampling, the passage of boats or vehicles, mining or physical removal due to building works. In disturbed areas, the 'normal' lichen flora is replaced by disturbance tolerant species, typically faster-growing species. For example, the littoral zone is dominated by Arthopyrenia halodytes in disturbed areas (Fletcher, 1980). Dethier (1994) noted that Verrucaria mucosa was less susceptible to experimental brushing with 'steel brush' than other crustose species in the littoral, but that it became more susceptible to damage from a steel and a nylon brush when completely submerged. However, no information on Verrucaria maura was found. Verucaria maura was not killed by high pressure washing during the Sea Empress oil spill cleanup (Moore, 2006) but was removed by bulldozing of the shore after the Esso Bernica oil spill (Rolan & Gallagher, 1991), although it was removed because the surface of the rock itself was removed or damaged. Sensitivity assessment. There is little direct evidence on the effect of surface abrasion on the 'black lichen belt'. Verucaria maura is crustose and closely adherent to the rock surface so may resist abrasion and only be removed where the abrasion destroys the rock surface. However, the observation that fast growing lichen species come to dominate areas subject to disturbance (Fletcher, 1980) suggests that the 'black lichen belt' may be sensitive. Gastropods would probably be removed by abrasion and barnacle crushed, except where they occur in crevices. Overall, a resistance of Medium is suggested to represent localised damage of the rock surface or long-term disturbance but with Low confidence. As resilience is probably Medium and sensitivity assessment of Medium is recorded. | MediumHelp | MediumHelp | MediumHelp |
Penetration or disturbance of the substratum subsurface [Show more]Penetration or disturbance of the substratum subsurfaceBenchmark. Damage to sub-surface features (e.g. species and physical structures within the habitat). Further detail EvidencePenetration is unlikely to be relevant to hard rock substrata. Therefore, the pressure is Not relevant. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Changes in suspended solids (water clarity) [Show more]Changes in suspended solids (water clarity)Benchmark. A change in one rank on the WFD (Water Framework Directive) scale e.g. from clear to intermediate for one year. Further detail EvidenceThe littoral fringe is rarely submerged and is often exposed to the air. For example, Fletcher (1980) noted that Lichina confinis, a species that occurs at the top of the littoral fringe, spent a maximum of 1% of time submerged each year while Verrucaria striatula, a species that occurs in the lower littoral fringe below the Verrucaria maura, spent a maximum of 44% of time submerged each year. Therefore, the 'black lichen belt' characterized by Ver.Ver and Ver.B are exposed to the air for the majority of the time. Hence, an increase in turbidity may not adversely affect the availability of light. Nevertheless, Fletcher (1980) noted that littoral fringe lichens die back in estuarine conditions but that loss of littoral lichens in estuaries can also be attributed to changes in salinity, pH, silt, reduced tidal range, or reduced wave exposure. Therefore, an increase in turbidity due to suspended solids (at the benchmark) may be detrimental and a resistance of 'Medium' is suggested but at Low confidence. As resilience is probably 'Medium', sensitivity is assessed as 'Medium' at the benchmark level. | MediumHelp | MediumHelp | MediumHelp |
Smothering and siltation rate changes (light) [Show more]Smothering and siltation rate changes (light)Benchmark. ‘Light’ deposition of up to 5 cm of fine material added to the seabed in a single discrete event. Further detail EvidenceNo evidence on the effect of siltation or smothering by sediment on littoral lichens was found. The lack of littoral lichens in estuaries was attributed to siltation amongst other factors by Fletcher (1980) but not to smothering alone. Therefore, no sensitivity assessment was made. | Not relevant (NR)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Smothering and siltation rate changes (heavy) [Show more]Smothering and siltation rate changes (heavy)Benchmark. ‘Heavy’ deposition of up to 30 cm of fine material added to the seabed in a single discrete event. Further detail EvidenceNo evidence on the effect of siltation or smothering by sediment on littoral lichens was found. The lack of littoral lichens in estuaries was attributed to siltation amongst other factors by Fletcher (1980) but not to smothering alone. Therefore, no sensitivity assessment was made. | Not relevant (NR)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Litter [Show more]LitterBenchmark. The introduction of man-made objects able to cause physical harm (surface, water column, seafloor or strandline). Further detail EvidenceNot assessed. | Not Assessed (NA)Help | Not assessed (NA)Help | Not assessed (NA)Help |
Electromagnetic changes [Show more]Electromagnetic changesBenchmark. A local electric field of 1 V/m or a local magnetic field of 10 µT. Further detail EvidenceNo evidence was found. | Not relevant (NR)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Underwater noise changes [Show more]Underwater noise changesBenchmark. MSFD indicator levels (SEL or peak SPL) exceeded for 20% of days in a calendar year. Further detail EvidenceNot relevant | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Introduction of light or shading [Show more]Introduction of light or shadingBenchmark. A change in incident light via anthropogenic means. Further detail EvidenceVerrucaria maura is well developed on both shaded and sunny coasts in Britain and Ireland but is considered a shade plant in North Africa, France and Scandinavia (Fletcher, 1980). Verrucaria mucosa and green forms of Verrucaria striatula increase in abundance on shaded shores and may, therefore, increase in abundance in the 'black lichen belt'. However, the artificial increase in light or shade may not adversely affect the littoral fringe, although seasonal opportunistic algae may be excluded and complete shade (darkness) may exclude even the lichens in the long-term. Therefore, resistance is probably High, albeit at Low confidence, so that resilience is High and the biotope is probably Not sensitive at the benchmark level. | HighHelp | HighHelp | Not sensitiveHelp |
Barrier to species movement [Show more]Barrier to species movementBenchmark. A permanent or temporary barrier to species movement over ≥50% of water body width or a 10% change in tidal excursion. Further detail EvidenceNot relevant | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Death or injury by collision [Show more]Death or injury by collisionBenchmark. Injury or mortality from collisions of biota with both static or moving structures due to 0.1% of tidal volume on an average tide, passing through an artificial structure. Further detail EvidenceThe pressure definition is not directly applicable to the littoral fringe so Not relevant has been recorded. Collision via ship groundings or terrestrial vehicles is possible but the effects are probably similar to those of abrasion above. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Visual disturbance [Show more]Visual disturbanceBenchmark. The daily duration of transient visual cues exceeds 10% of the period of site occupancy by the feature. Further detail EvidenceLichens have no visual receptors, so the pressure is Not relevant. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Biological Pressures
Use [show more] / [show less] to open/close text displayed
Resistance | Resilience | Sensitivity | |
Genetic modification & translocation of indigenous species [Show more]Genetic modification & translocation of indigenous speciesBenchmark. Translocation of indigenous species or the introduction of genetically modified or genetically different populations of indigenous species that may result in changes in the genetic structure of local populations, hybridization, or change in community structure. Further detail EvidenceNo evidence on the translocation, breeding or species hybridization in lichens was found. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Introduction or spread of invasive non-indigenous species [Show more]Introduction or spread of invasive non-indigenous speciesBenchmark. The introduction of one or more invasive non-indigenous species (INIS). Further detail EvidenceEssl & Lambdon (2009) reported that that only five species of lichen were thought to be alien in the UK, which is ca 0.3% of the UK's lichen flora. All five species were Parmelia spp. epiphytes and unlikely to occur in the supralittoral. Essl & Lambdon (2009) note that no threat to competing natives has yet been demonstrated. Although they note that information on the presence or spread of non-indigenous lichens is unclear due to the lack of data on lichen distribution across Europe. Therefore, there is currently not enough evidence on which to base an assessment. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Introduction of microbial pathogens [Show more]Introduction of microbial pathogensBenchmark. The introduction of relevant microbial pathogens or metazoan disease vectors to an area where they are currently not present (e.g. Martelia refringens and Bonamia, Avian influenza virus, viral Haemorrhagic Septicaemia virus). Further detail EvidenceNo evidence on disease or pathogens mediated mortality was found. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Removal of target species [Show more]Removal of target speciesBenchmark. Removal of species targeted by fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail EvidenceNo information concerning the use of marine lichens was found. Extraction of lichens will undoubtedly reduce their abundance but probably not the extent of the supralittoral zone. However, No evidence of targetted removal was found. | No evidence (NEv)Help | Not relevant (NR)Help | No evidence (NEv)Help |
Removal of non-target species [Show more]Removal of non-target speciesBenchmark. Removal of features or incidental non-targeted catch (by-catch) through targeted fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail EvidenceVerrucaria spp. are crustose lichens, thin and closely attached to the surface of hard rocks. It is very unlikely that they would be removed accidentally by any fishery activity at a commercial or recreational scale. Physical removal from rock by abrasion, or by removal of pieces of rock could occur during oil spill cleanup by high-pressure washing or bulldozing (Rolan & Gallagher, 1991; Moore, 2006) but physical abrasion is addressed under the relevant pressure above. Therefore, this pressure was considered to be Not relevant. | Not relevant (NR)Help | Not relevant (NR)Help | Not relevant (NR)Help |
Bibliography
Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. ISBN 1 861 07561 8. In JNCC (2015), The Marine Habitat Classification for Britain and Ireland Version 15.03. [2019-07-24]. Joint Nature Conservation Committee, Peterborough. Available from https://mhc.jncc.gov.uk/
Cullinane, J.P., McCarthy, P. & Fletcher, A., 1975. The effect of oil pollution in Bantry Bay. Marine Pollution Bulletin, 6, 173-176.
Dethier, M.N., 1994. The ecology of intertidal algal crusts: variation within a functional group. Journal of Experimental Marine Biology and Ecology, 177 (1), 37-71.
Dethier, M.N. & Steneck, R.S., 2001. Growth and persistence of diverse intertidal crusts: survival of the slow in a fast-paced world. Marine Ecology Progress Series, 223, 89-100.
Dobson, F.S., 2000. Lichens: an illustrated guide to the British and Irish species. Slough: The Richmond Publishing Co. Ltd.
Ellis, C.J., Coppins, B.J., Dawson, T.P. & Seaward, M.R.D., 2007. Response of British lichens to climate change scenarios: Trends and uncertainties in the projected impact for contrasting biogeographic groups. Biological Conservation, 140 (3–4), 217-235.
Essl, F. & Lambdon, P.W., 2009. Alien Bryophytes and Lichens of Europe. In Handbook of Alien Species in Europe, Dordrecht: Springer Netherlands, pp. 29-41.
Fletcher, A., 1980. Marine and maritime lichens of rocky shores: their ecology, physiology, and biological interactions. In The Shore Environment, vol. 2: Ecosystems (ed. J.H. Price, D.E.G. Irvine & W.F. Farnham), pp. 789-842. London: Academic Press. [Systematics Association Special Volume no. 17(b)].
Gerson, U & Seaward, M.R.D., 1977. Lichen - invertebrate associations. In Lichen ecology (ed. M.R.D. Seaward), pp. 69-119. London: Academic Press.
Honeggar, R., 2008. Morphogenesis. In Lichen Biology 2edn. (Nash III, T.H. ed.), pp 69-93. Cambridge, Cambrdige University Press
JNCC (Joint Nature Conservation Committee), 2022. The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/
JNCC (Joint Nature Conservation Committee), 2022. The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/
Jones, W.E., Fletcher, A., Hiscock, K. & Hainsworth, S., 1974. First report of the Coastal Surveillance Unit. Feb.-July 1974. Coastal Surveillance Unit, University College of North Wales, Bangor, 1974.
Kronberg, I., 1988. Structure and adaptation of the fauna in the black zone (littoral fringe) along rocky shores in northern Europe. Marine Ecology Progress Series, 49 (1-2), 95-106.
Moore, J.J., 2006. State of the marine environment in SW Wales, 10 years after the Sea Empress oil spill. A report to the Countryside Council for Wales from Coastal Assessment, Liaison & Monitoring, Cosheston, Pembrokeshire. CCW Marine Monitoring Report No: 21. 30pp.
Nash III, T.H., 2008. Lichen Biology 2 edn. Cambridge, Cambridge University Press.
Ranwell, D.S., 1968. Lichen mortality due to 'Torrey Canyon' oil and decontamination measures. Lichenologist, 4, 55-56.
Rolan, R.G. & Gallagher, R., 1991. Recovery of Intertidal Biotic Communities at Sullom Voe Following the Esso Bernicia Oil Spill of 1978. International Oil Spill Conference Proceedings: March 1991, Vol. 1991, No. 1, pp. 461-465. DOI: http://dx.doi.org/10.7901/2169-3358-1991-1-461
Sancho, L.G., Allan Green, T.G. & Pintado, A., 2007. Slowest to fastest: Extreme range in lichen growth rates supports their use as an indicator of climate change in Antarctica. Flora - Morphology, Distribution, Functional Ecology of Plants, 202 (8), 667-673.
Seaward, M.R.D., 2008. The environmental role of lichens. In Lichen Biology (ed. Nash III, T.H.) pp. 274-298. Cambridge. Cambridge University Press.
Citation
This review can be cited as:
Last Updated: 29/01/2016
- Black
- lichen