Barnacles and Littorina spp. on unstable eulittoral mixed substrata

Summary

UK and Ireland classification

Description

The eulittoral zone, particularly the mid-shore zone, of sheltered to extremely sheltered mixed substrata shores is often characterized by flat banks or scards of cobbles and pebbles (on sediment) which are either too small or unstable to support a seaweed community. The boulders and larger cobbles are usually colonised by the barnacles Semibalanus balanoides or in areas with variable salinity Elminius modestus and often dense aggregations of the winkles Littorina littorea and Littorina saxatilis are present as well. Between the cobbles and pebbles the mussel Mytilus edulis occasionally occurs, but always at low abundance. Juvenile crabs Carcinus maenas and gammarids may occur between and underneath the pebbles and cobbles. Brown seaweeds are rare, although the wrack Fucus vesiculosus may occasionally occur on larger cobbles and small boulders in the mid and upper-shore zones. Ephemeral green seaweeds such as Ulva intestinalis may also be present. Shallow pools and patches of standing water may occur in low-lying areas and may contain amphipods and filamentous green seaweeds. Due to the unstable nature of the substratum, the diversity and density of flora and fauna is characteristically low

This biotope is found primarily on enclosed (estuarine) stony shores in wave-sheltered conditions and may be subject to variable levels of salinity. It is found predominately in the mid-shore zone below or at the same level as the biotope dominated by ephemeral green seaweeds (EphX). If it is found in the upper shore region it can be backed by salt marsh species such as Salacornia and Spartina sp. Below are biotopes dominated by the wracks Fucus serratus or F. vesiculosus (Fserr.X; Fves.X). (Information from Connor et al., 2004; JNCC, 2015, 2022).

Depth range

Mid shore

Additional information

None entered

Listed By

Habitat review

Ecology

Ecological and functional relationships

  • The SLR.BLlit biotope is found in a range of wave exposures. In exposed locations disturbance is high creating small scale succession events so that only fast growing opportunistic algal species such as Ulva are able to grow. However, the abundance of green algae in the biotope is low because of the grazing activity of Littorina littorea which occur in high abundance. In sheltered locations the substrata is more stable and fucoid sporelings may settle but are removed by the grazing activity of limpets and Littorina littorea. Thus, because of the impact of disturbance and/or grazing, algal cover is very low in the whole range of exposure in which the biotope is found.
  • The pebble and cobble beaches of SLR.BLlit have a poor fauna in comparison to open shore locations on bedrock, presumably as a result of siltation and the instability of the substratum. There is a covering of barnacles on the cobbles and pebbles and on larger stable boulders and rock Patella vulgata is present in high abundance. Littorina littorea, which is tolerant of muddy and silty conditions, can be found in large aggregations and often cluster on the tops of small stones. Although Mytilus edulis is less common on cobbles and pebbles than on larger boulders or bedrock, the species may serve to enhance the stability of the substratum.
  • Algal cover in the biotope is low and limited mostly to opportunistic green species such as Ulva spp. and Ulva spp.
  • In extremely sheltered locations, even the smallest stones are relatively stable but remain unoccupied by algal sporelings so that barnacles settle (Lewis, 1964; Raffaelli & Hawkins, 1999).
  • Littorina littorea is often the dominant grazing gastropod on the lower shore eating soft macrophytes and microalgae. Experiments in Helgoland (Janke, 1990) suggest that Littorina grazing can exclude the green alga Ulva and reduce the settlement and growth of Fucus species. Cover by opportunistic species like Ulva may be kept in check by littorinid grazing.
  • A dense covering of barnacle species is effective in limiting the efficiency of limpet grazing which adversely affects limpet growth. Bulldozing by grazing limpets may cause high post-settlement mortality of barnacles (Jenkins et al., 2000).
  • The crab Carcinus maenas is a predator of young Littorina littorea.
  • The characterizing species of the sediment beneath the pebbles and cobbles are infaunal such as the obligate deposit feeding Arenicola marina.

Seasonal and longer term change

Rocky shore communities are often highly variable in time, due to the combined influences of physical disturbance, competition, grazing, predation and variation in recruitment. Barnacle dominated rocky shores demonstrate dynamic temporal changes, mediated by relatively random events such as recruitment intensity, and the abundance of grazers and predators (Hawkins et al., 1992; Raffaelli & Hawkins, 1999). Settlement of Semibalanus balanoides takes place in the spring and Chthamalus spp. in the summer and autumn. Seasonal fluctuations in the abundance of Ulva spp. may also be seen.

Habitat structure and complexity

Habitat complexity in this biotope is relatively limited in comparison to some rocky shore biotopes. However, the mixed nature of pebbles and cobbles, boulders, rocks and coarse sediment does create some complexity. Larger cobbles and boulders provide substratum and shelter for a variety of species such as small crabs and gammarid amphipods. Beneath boulders and the largest cobbles and pebbles (if free of sediment) underboulder communities may be present. Smaller pebbles and cobbles will be too small and too unstable (e.g. subject to overturn) for some encrusting species to persist.

Productivity

In the absence, or low abundance, of macroalgae, production in this biotope is mostly secondary production by suspension and deposit feeders. Primary production will be limited to microalgae growing on rock surfaces. Detrital input will be important for the suspension feeding barnacles and mussels. Rocky shores can make a contribution to the food of many marine species through the production of planktonic larvae and propagules which contribute to pelagic food chains. In general rocky shore communities are highly productive and are an important source of food and nutrients for members of neighbouring terrestrial and marine ecosystems (Hill et al., 1998). However, in the SLR.BLlit biotope, faunal species may not attain the same biomass that may be found on stable rocky substrata on the open coast, so secondary productivity is likely to be lower.

Recruitment processes

Most species present in the biotope possess a planktonic stage (gamete, spore or larvae) which float in the plankton before settling and metamorphosing into the adult form. This strategy allows species to rapidly colonize new areas that become available such as in the gaps often created by storms. Thus, for organisms such as those present in this biotope, it has long been evident that recruitment from the pelagic phase is important in governing the density of populations on the shore (Little & Kitching, 1996). Both the demographic structure of populations and the composition of assemblages may be profoundly affected by variation in recruitment rates.

  • Littorina littorea can breed throughout the year but the length and timing of the breeding period are extremely dependent on climatic conditions. Also, estuaries provide a more nutritious environment than the open coast (Fish, 1972). Sexes are separate, and fertilisation is internal. Littorina littorea sheds egg capsules directly into the sea. Egg release is synchronized with spring tides and occurs on several separate occasions. In estuaries, the population matures earlier in the year and maximum spawning occurs in January (Fish, 1972). Fecundity value is up to 100,000 for a large female (27mm shell height) per year. Female fecundity increases with size. Larval settling time or pelagic phase can be up to six weeks. Males prefer to breed with larger, more fecund females (Erlandsson & Johannesson, 1992). Parasitism by trematodes may cause sterility in Littorina littorea.
  • Barnacle settlement and recruitment can be highly variable because it is dependent on a suite of environmental and biological factors, such as wind direction and success depends on settlement being followed by a period of favourable weather. Long-term surveys have produced clear evidence of barnacle populations responding to climatic changes. During warm periods Chthamalus spp. Predominate, whilst Semibalanus balanoides does better during colder spells (Hawkins et al., 1994). Release of Semibalanus balanoides larvae takes place between February and April with peak settlement between April and June. Release of larvae of Chthamalus montagui takes place later in the year, between May and August.
  • Recruitment of Patella vulgata fluctuates from year to year and from place to place. Fertilization is external and the larvae is pelagic for up to two weeks before settling on rock at a shell length of about 0.2mm. Winter breeding occurs only in southern England, in the north of Scotland it breeds in August and in north-east England in September.
  • Mytilus edulis recruitment is dependant on larval supply and settlement, together with larval and post-settlement mortality. Recruitment in many Mytilus sp. populations is sporadic, with unpredictable pulses of recruitment (Seed & Suchanek, 1992). Mytilus sp. is highly gregarious and final settlement often occurs around or in-between individual mussels of established populations.
  • The infaunal polychaete Arenicola marina has high fecundity and the eggs develop lecithotrophically within the sediment or at the sediment surface. There is no pelagic larval phase and the juveniles disperse by burrowing. Recruitment must occur from local populations or by longer distance dispersal of postlarvae in water currents or during periods of bedload transport.
  • Ulva is a rapidly growing opportunistic species which can colonize bare substrata soon after it is created.

Time for community to reach maturity

No specific information was found concerning time taken for the community to reach maturity. However, the characterizing species of the SLR.BLlit biotope are widespread, highly fecund and quick to grow and mature and so the community would be expected to reach maturity within 5 years. For example, Bennell (1981) observed that barnacles that were removed when the surface rock was scraped off in a barge accident at Amlwch, North Wales returned to pre-accident levels within 3 years. However, barnacle recruitment can be very variable because it is dependent on a suite of environmental and biological factors, such as wind direction, so populations may take longer to recruit to suitable areas. Littorina littorea is widespread and often common or abundant. Littorina littorea is an iteroparous breeder with high fecundity that lives for several (at least 4) years. Breeding can occur throughout the year and larvae form the main mode of dispersal. The planktonic larval stage is long (up to 6 weeks) although larvae do tend to remain in waters close to the shore. Most of the other species in the biotope have planktonic larvae and so should colonize suitable areas. Therefore, it seems likely that the biotope would reach maturity within five years. However, in newly created substrata, initial absence of grazing prosobranchs may allow first green, then brown algae to grow and dominate the shore until removed by scour or old age. In such cases the establishment of SLR.Bllit may take longer than five years.

Additional information

None

Preferences & Distribution

Habitat preferences

Depth Range Mid shore
Water clarity preferencesData deficient
Limiting Nutrients Data deficient
Salinity preferences Full (30-40 psu), Variable (18-40 psu)
Physiographic preferences
Biological zone preferences Eulittoral
Substratum/habitat preferences Cobbles, Pebbles, Sand
Tidal strength preferences No information
Wave exposure preferences Extremely sheltered, Sheltered, Very sheltered
Other preferences Unstable substrata

Additional Information

This biotope is found in a range of wave exposure regimes from exposed to extremely sheltered.

Species composition

Species found especially in this biotope

    Rare or scarce species associated with this biotope

    -

    Additional information

    None

    Sensitivity review

    Sensitivity characteristics of the habitat and relevant characteristic species

    The description of this biotope and information on the characterizing species is taken from Connor et al., (2004). The biotopes LR.FLR.Eph.EphX and LR.FLR.Eph.BLitX are very similar in terms of the species present and the habitats they occur in. The significant difference between these two variants is that the abundance of associated species (barnacles and littorinds) is greater in LR.FLR.Eph.BLitX and ephemeral green and red algae are present only in low abundances. Connor et al., (2004) suggest that LR.FLR.Eph.EphX may be a summer variation of LR.FLR.Eph.BLitX, in which ephemeral algal growth has exceeded the capacity of the grazing molluscs. The biotope is found on mixed substrata (pebbles and cobbles overlying sand or mud) where physical disturbance from sand abrasion, sediment instability or variable salinity, prevents the development of a longer-lived biological assemblage, such as the fucoid dominated biotopes, more typical of stable rocky shores or mixed substrata. The LR.FLR.Eph.BLitX biotope is characterized by flat banks or scards of cobbles and pebbles (on sediment) which are either too small or unstable to support a seaweed community. The boulders and larger cobbles are usually colonized by the barnacles Semibalanus balanoides or in areas with variable salinity Elminius modestus and often dense aggregations of the winkles Littorina littorea and Littorina saxatilis are present as well and sometimes Mytilus edulis, at low densities.  Macroalgae may be present but at low densities due to the instability of the sediment. The mobile species may structure the assemblage through grazing on algae e.g. littorinids, or through predation on grazers, e.g. Carcinus maenas.  Grazing by Littorina littorea can produce dramatic effects on both the algal assemblage (Lubchenco, 1978, 1983; Robles, 1982; Albrecht, 1998) and habitat structure (Bertness, 1984) of the intertidal zone.

    The sensitivity assessments are based on the barnacles and littorinids which are considered to be the key characterizing species for this biotope; the littorinids are also considered to be a key structuring species through grazing. The sensitivity assessments also consider the general habitat characteristics of physically disturbed mixed substrata.  The substratum mobility within this biotope may, however, be the key factor structuring the biotope. Where storms or wave action frequently move boulders and cobbles the scour and abrasion may crush and remove species or may result in them being in an unfavourable position. Barnacles and macroalgae that are present on an overturned boulder would be unable to feed or photosynthesise and would die.

    Resilience and recovery rates of habitat

    Where individuals are removed from a small area, littorinids may recolonize from surrounding patches of habitat where they are present.  The recovery of the attached species Semibalanus balanoidesMytilus edulis and the ephemeral algae will depend on recolonization by waterborne propagules.  The characterizing and associated species are all common and widespread and reproduce annually producing pelagic larvae that can disperse over long distances. It is therefore likely that larval supply to impacted areas will provide high numbers of potential recruits.  However, a range of factors, including species interactions, determine the rate of successful recruitment of juveniles to the population. 

    Semibalanus balanoides brood egg masses over autumn and winter and release the nauplii larvae during spring or early summer, to coincide with phytoplankton blooms on which the larvae feed. A range of local environmental factors, including surface roughness (Hills & Thomason, 1998), wind direction (Barnes, 1956), shore height, wave exposure (Bertness et al., 1991) and tidal currents (Leonard et al., 1998) have been identified, among others, as affecting the settlement of Semibalanus balanoides. Biological factors such as larval supply, competition for space, presence of adult barnacles (Prendergast et al., 2009) and the presence of species that facilitate or inhibit settlement (Kendall et al., 1985, Jenkins et al., 1999) also play a role in recruitment.  Mortality of juveniles can be high but highly variable, with up to 90 % of Semibalanus balanoides dying within ten days, therefore successful recruitment may be episodic (Kendall et al., 1985). 

    Barnacles are often quick to colonize available gaps, although a range of factors, as outlined above, will influence whether there is a successful episode of recruitment in a year to re-populate a shore following impacts. Bennell (1981) observed that barnacles that were removed when the surface rock was scraped off in a barge accident at Amlwch, North Wales returned to pre-accident levels within 3 years. Petraitis & Dudgeon (2005) also found that Semibalanus balanoides quickly recruited (present a year after and increasing in density) to experimentally cleared areas within the Gulf of Maine, that had previously been dominated by Ascophyllum nodosum However, barnacle densities were fairly low (on average 7.6 % cover) as predation levels in smaller patches were high and heat stress in large areas may have killed a number of individuals (Petraitis et al., 2003). Following creation of a new shore in the Moray Firth, Semibalanus balanoides did not recruit in large numbers until 4 years after shore creation (Terry & Sell, 1986). 

    Littorina littorea reproduces annually over an extended period, the egg capsules are shed directly into the sea. Egg release is synchronized with spring tides and occurs on several separate occasions. In estuaries, the population matures earlier in the year and maximum spawning occurs in January (Fish, 1972). A large female (27 mm shell height) may produce up to 100,000 egg capsules per year. Larval settling time or pelagic phase can be up to six weeks conferring high dispersal potential in the water column.

    Resilience assessment.  No evidence for recovery rates were found specifically for this biotope.  Due to sediment instability this biotope is subject to frequent disturbance and the associated species assemblage is impoverished, consisting of few species that can either resist disturbances or recover rapidly through mortality or larval supply. The age structure of populations of the associated species is likely to be skewed towards young individuals due to high levels of mortality from disturbances.  Most species, with the exception of littorinids are present at low abundances.  Grazing by littorinids is a key factor structuring this biotope and their removal could lead to blooms of ephemeral algae (Ulva spp.) and biotope reclassification to LR.FLR.Eph.EphX. Biotope recovery to the normal state is considered to be rapid and resilience is assessed as ‘High’ (within 2 years) for all levels of resistance (None, Low, Medium and High).

    NB: The resilience and the ability to recover from human induced pressures is a combination of the environmental conditions of the site, the frequency (repeated disturbances versus a one-off event) and the intensity of the disturbance.  Recovery of impacted populations will always be mediated by stochastic events and processes acting over different scales including, but not limited to, local habitat conditions, further impacts and processes such as larval-supply and recruitment between populations. Full recovery is defined as the return to the state of the habitat that existed prior to impact.  This does not necessarily mean that every component species has returned to its prior condition, abundance or extent but that the relevant functional components are present and the habitat is structurally and functionally recognizable as the initial habitat of interest. It should be noted that the recovery rates are only indicative of the recovery potential.  

    Hydrological Pressures

    Use [show more] / [show less] to open/close text displayed

    ResistanceResilienceSensitivity
    Temperature increase (local) [Show more]

    Temperature increase (local)

    Benchmark. A 5°C increase in temperature for one month, or 2°C for one year. Further detail

    Evidence

    Intertidal species are exposed to extremes of high and low air temperatures during periods of emersion. They must also be able to cope with sharp temperature fluctuations over a short period of time during the tidal cycle. In winter air temperatures are colder than the sea, conversely in summer air temperatures are much warmer than the sea. Species that occur in the intertidal are therefore generally adapted to tolerate a range of temperatures, with the width of the thermal niche positively correlated with the height of the shore that the animal usually occurs at (Davenport & Davenport, 2005).

    The median upper lethal temperature limit in laboratory tests on Littorina saxatilis and Littorina littorea  collected in the summer at Great Cumbrae, Scotland), was approximately 35 oC (Davenport & Davenport, 2005). Semibalanus balanoides collected from the same shores had similarly high thermal tolerance, with summer collected individuals having a median upper lethal limit of approximately 35oC.

    In laboratory experiments Littorina littorea collected from the Kiel Fjord in Germany and kept in tanks at  temperatures 5oC above the seawater temperatures from the collection area  (Kiel fjord, Germany) for 5 months (temperatures in laboratory ranged from 13-23oC) did not die although some decreases in shell strength were observed (Landes & Zimmer, 2012).

    Although adults may be able to withstand acute and chronic increases in temperature at the pressure benchmark, increased temperatures may have sub-lethal effects on the population through impacts on reproduction. The distribution of the key characterizing species, Semibalanus balanoides is ‘northern’ with their range extending to the Arctic circle. Populations in the southern part of England are relatively close to the southern edge of their geographic range. Long-term time series show that successful recruitment of Semibalanus balanoides is correlated to sea temperatures (Mieszkowska, et al., 2014) and that due to recent warming its range has been contracting northwards. Temperatures above 10 to 12oC inhibit reproduction (Barnes, 1957, 1963; Crisp & Patel, 1969) and laboratory studies suggest that temperatures at or below 10oC for 4-6 weeks are required in winter for reproduction, although the precise threshold temperatures for reproduction are not clear (Rognstad et al., 2014). Observations of recruitment success in Semibalanus balanoides throughout the South West of England, strongly support the hypothesis that an extended period (4-6 weeks) of sea temperatures <10oC is required to ensure a good supply of larvae (Rognstad et al., 2014, Jenkins et al., 2000). During periods of high reproductive success, linked to cooler temperatures, the range of barnacles has been observed to increase, with range extensions in the order of 25 km (Wethey et al., 2011), and 100 km (Rognstad et al., 2014).  Increased temperatures are likely to favour chthamalid barnacles or Austrominius modestus in the sheltered variable salinity biotopes rather than Semibalanus balanoides (Southward et al. 1995). 

    Most of the other species within the biotope are eurythermal (e.g. ephemeral algae and Mytilus edulis) and are also hardy intertidal species that tolerate long periods of exposure to the air and consequently wide variations in temperature. In addition, most species are distributed to the north of south of the UK and unlikely to be adversely affected by long-term temperature changes at the benchmark level. 

     Sensitivity assessment. Adult Semibalanus balanoides and Littorina littorea are considered likely to be able to tolerate an acute or chronic increase in temperature at the pressure benchmark, however, if an acute change in temperature occurred in autumn or winter it could disrupt reproduction in Semibalanus balanoides while a chronic change could alter reproductive success if it exceeded thermal thresholds for reproduction. The effects would depend on the magnitude, duration and footprint of the activities leading to this pressure. However, barnacle populations are highly connected, with a good larval supply and high dispersal potential (Wethey et al., 2011, Rognstad et al., 2014).   The littorinids reproduce throughout the year and are not considered sensitive at the pressure benchmark. Resistance of the characterizing species is therefore assessed as ‘High’ and resilience as ‘High’ (by default). This biotope is, therefore, considered to be ‘Not sensitive’ at the pressure benchmark. Sensitivity to longer-term, broad-scale perturbations such as increased temperatures from climate change would however be greater, based on the extent of impact and the reduction in larval supply.

    High
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    High
    High
    High
    Help
    Temperature decrease (local) [Show more]

    Temperature decrease (local)

    Benchmark. A 5°C decrease in temperature for one month, or 2°C for one year. Further detail

    Evidence

    Many intertidal species are tolerant of freezing conditions as they are exposed to extremes of low air temperatures during periods of emersion. They must also be able to cope with sharp temperature fluctuations over a short period of time during the tidal cycle. In winter air temperatures are colder than the sea, conversely in summer air temperatures are much warmer than the sea. Species that occur in the intertidal are therefore generally adapted to tolerate a range of temperatures, with the width of the thermal niche positively correlated with the height of the shore that the animal usually occurs at (Davenport & Davenport, 2005).

    The tolerance of Semibalanus balanoides collected in the winter (and thus acclimated to lower temperatures) to low temperatures was tested in the laboratory. The median lower lethal temperature tolerance was -14.6 oC (Davenport & Davenport, 2005). A decrease in temperature at the pressure benchmark is therefore unlikely to negatively affect this species. The same series of experiments indicated that median lower lethal temperature tolerances for Littorina saxatilis and Littorina littorea were -16.4 and -13 oC respectively. In experiments Littorina littorea were able to tolerate temperatures down to -8 °C for 8 days (Murphy, 1983). In colder conditions an active migration may occur down the shore to a zone where exposure time to the air (and hence time in freezing temperatures) is less

    The distribution of the key characterizing species Semibalanus balanoides is 'northern' with their range extending to the Arctic circle. Over their range they are therefore subject to lower temperatures than in the UK, although distributions should be used cautiously as an indicator of thermal tolerance (Southward et al., 1995).   Long-term time series show that recruitment success is correlated to lower sea temperatures (Mieszkowska et al., 2014). Due to warming temperatures its range has been contracting northwards. Temperatures above 10 to 12 oC inhibit reproduction (Barnes, 1957, 1963; Crisp & Patel, 1969) and laboratory studies suggest that temperatures at or below 10 oC for 4-6 weeks are required in winter for reproduction, although the precise threshold temperatures for reproduction are not clear (Rognstad et al., 2014).  

    The associated species Mytilus edulis and Ulva spp. are eurytopic, found in a wide temperature range and in areas which frequently experience freezing conditions and are vulnerable to ice scour (Seed & Suchanek, 1992). 

    Sensitivity assessment. Based on the wide temperature tolerance range of Littorina littorea and other littorinids it is concluded that the acute and chronic decreases in temperature described by the benchmark would have limited effect.  Similarly, based on global temperatures and the link between cooler winter temperatures and reproductive success, Semibalanus balanoides is also considered to be unaffected at the pressure benchmark. A decrease in temperature will favour Semibalanus balanoides over other barnacle species (Southward et al. 1995). Other species in the biotope also show low intolerance to decreases in temperate. long-term chronic temperature decreases may reduce growth. Therefore, a benchmark decrease in temperature is likely to result in sub-lethal effects only and this biotope is considered to have ‘High’ resistance and ‘High resilience (by default) to this pressure and is, therefore, considered to be ‘Not sensitive’. 

    High
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    High
    High
    High
    Help
    Salinity increase (local) [Show more]

    Salinity increase (local)

    Benchmark. A increase in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

    Evidence

    The biotope occurs in habitats subject to full and variable salinity (Connor et al., 2004). In the laboratory, Semibalanus balanoides was found to tolerate salinities between 12 and 50 psu (Foster, 1970). Young Littorina littorea inhabit rock pools where salinity may increase above 35 psu. Thus, these key characterizing species may be able to tolerate some increase in salinity.  Resistance from a change to variable to full salinity is therefore assessed as ‘High’ and resilience is assessed as ‘High’ so that the biotope is ‘Not sensitive’.

    High
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    High
    High
    High
    Help
    Salinity decrease (local) [Show more]

    Salinity decrease (local)

    Benchmark. A decrease in one MNCR salinity category above the usual range of the biotope or habitat. Further detail

    Evidence

    The biotope occurs in subject to full and variable salinity (Connor et al., 2004). Evidence on salinity tolerances was found for the characterizing barnacle species. Semibalanus balanoides are tolerant of a wide range of salinity and can survive periodic emersion in freshwater, e.g. from rainfall or freshwater run-off, by closing their opercular valves (Foster, 1971b). They can also withstand large changes in salinity over moderately long periods of time by falling into a "salt sleep" and can be found on shores (example from Sweden) with large fluctuations in salinity around a mean of 24 (Jenkins et al., 2001). In areas of permanently reduces salinity the Australian barnacle Austrominius (formerly Elminius) modestus may be favoured, as this species is more tolerant of lower salinities and is found further up estuaries than other barnacles (Gomes-Filho et al., 2010).

    Littorina littorea is found in waters of full, variable and reduced salinities (Connor et al., 2004) and so populations are not likely to be highly intolerant of decreases in salinity at the pressure benchmark.

    Similarly, most of the associated species (e.g. Mytilus edulis) are found in a wide range of salinities and are probably tolerant of variable or reduced salinity.  A prolonged reduction in salinity, e.g. to reduced salinity (18-30 ppt) is likely to reduce the species richness of the biotope due to loss of some intolerant invertebrates. However, the dominant species will probably survive and the integrity of the biotope is likely to be little affected although some reduction in abundance may occur and this may be followed by an increase in ephemeral algae.

    Sensitivity assessment. Based on reported distributions and the results of experiments to assess salinity tolerance thresholds and behavioural and physiological responses in  Littorina littorea and Semibalanus balanoides it is considered that the benchmark decrease in salinity (from full to variable or variable to reduced) would not result in mortality of Littorina littorea  and Semibalanus balanoides is judged to tolerate a change in salinity from full to variable but that a change from variable to reduced salinity may reduce habitat suitability and lead to replacement by Austrominius modestus. This replacement would not alter the character of the biotope.  Resistance is therefore assessed as 'High' and resilience as 'High', based on no effect to recover from and the biotope is considered to be 'Not sensitive'.  

    High
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    High
    High
    High
    Help
    Water flow (tidal current) changes (local) [Show more]

    Water flow (tidal current) changes (local)

    Benchmark. A change in peak mean spring bed flow velocity of between 0.1 m/s to 0.2 m/s for more than one year. Further detail

    Evidence

    The biotope is characteristic of areas sheltered from wave exposure that are subject to tidal streams. Growth and reproduction of Semibalanus balanoides is influenced by food supply and water velocity (Bertness et al., 1991). Laboratory experiments demonstrate that barnacle feeding behaviour alters over different flow rates but that barnacles can feed at a variety of flow speeds (Sanford et al., 1994). Flow tank experiments using velocities of 0.03, 0.07 and 0.2 m/s showed that a higher proportion of barnacles fed at higher flow rates (Sanford et al., 1994). Feeding was passive, meaning the cirri were held out to the flow to catch particles; although active beating of the cirri to generate feeding currents occurs in still water (Crisp & Southward, 1961). Field observations at sites in southern New England (USA) that experience a number of different measured flow speeds, found that Semibalanus balanoides from all sites responded quickly to higher flow speeds, with a higher proportion of individuals feeding when current speeds were higher. Barnacles were present at a range of sites, varying from sheltered sites with lower flow rates (maximum observed flow rates <0.06- 0.1 m/s), a bay site with higher flow rates (maximum observed flows 0.2-0.3 m/s) and open coast sites (maximum observed flows 0.2-0.4 m/s). Recruitment was higher at the site with flow rates of 0.2-0.3 m/s (although this may be influenced by supply) and at higher flow microhabitats within all sites. Both laboratory and field observations indicate that flow is an important factor with effects on feeding, growth and recruitment in Semibalanus balanoides (Sanford et al., 1994; Leonard et al., 1998), however, the results suggest that flow is not a limiting factor determining the overall distribution of barnacles as they can adapt to a variety of flow speeds.

    Littorina littorea is found in areas with water flow rates from negligible to strong, although populations exposed to different levels of flow may have adapted to local conditions. Increases in water flow rates above 6 knots ( 3 m/s) may cause snails in less protected locations (e.g. not in crevices etc.) to be continually displaced into unsuitable habitat so that feeding may become sub-optimal. Thus, populations of Littorina littorea are likely to reduce.  Shell morphology within littorinids varies according to environmental conditions. In sheltered areas shell apertures are small to inhibit predation where Carcinus maenas is more prevalent while in exposed areas the foot surface is larger to allow greater attachment and the shell spire is lower to reduce drag (Raffaelli 1982; Crothers, 1992).

    Sensitivity assessment.  Based on the available evidence the characterizing species  Littorina littorea and Semibalanus balanoides are able to adapt to high flow rates and the biotope is, therefore, considered to be 'Not sensitive' to an increase in water flow. A decrease in water flow may have some effects on recruitment and growth, but this is not considered to be lethal at the pressure benchmark and resistance is therefore assessed as 'High' and resilience as 'High' by default. Changes in water flow may, however have impacts on the mixed substrata biotope. Reductions in flow may lead to increased deposition of silts and alter the sediment character, littorinids are found on sediments and may survive some deposition but barnacles would incur extra energetic costs filtering and clearing feeding apparatus. An increase in water flow at the pressure benchmark may re-suspend and remove sand particles which are less cohesive than mud particles. In sites with mobile cobbles and boulders increased scour results in lower densities of Littorina spp. compared with other, local sites with stable substratum (Carlson et al., 2006).Where these are protected by banks of cobbles and pebbles that protect the underlying sediment and reduce flow through friction the biotope will remain unchanged. The level of impact will depend on site specific hydrodynamic and sediment conditions. Biotope resistance to changes in water flow that do not alter the substrata is assessed as ‘High’ and resilience as ‘High’ (by default) so that the biotope is assessed as ‘Not sensitive’

    High
    High
    Medium
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    High
    Medium
    High
    Help
    Emergence regime changes [Show more]

    Emergence regime changes

    Benchmark.  1) A change in the time covered or not covered by the sea for a period of ≥1 year or 2) an increase in relative sea level or decrease in high water level for ≥1 year. Further detail

    Evidence

    Emergence regime is a key factor structuring this (and other) intertidal biotopes.  Records suggest that, typically, above this biotope is either the biotope dominated by ephemeral green seaweeds (LR.FLR.Eph.EphX), or, if it is found in the upper shore region, salt marsh species such as Salacornia and Spartina sp. Below are biotopes dominated by the wracks Fucus serratus or Fucus vesiculosus.

    Increased emergence may reduce habitat suitability for characterizing species through greater exposure to desiccation and reduced feeding opportunities for the barnacles to feed when immersed.   The mobile species present within the biotope, including the shore crab Carcinus maenas and the littorinids would be able to relocate to preferred shore levels. An increase in emergence that reduced habitat suitability for the grazing littorinids would allow blooms of ephemeral Ulva spp. to develop altering the classification of the biotope to LR.FLR.Eph.EphX.

    Decreased emergence would reduce desiccation stress and allow the attached suspension feeding barnacles more feeding time. Predation pressure on mussels, littorinids and barnacles is likely to increase where these are submerged for longer periods and to prevent colonisation of lower zones. Semibalanus balanoides was able to extend its range into lower zones when protected from predation by the dogwhelk, Nucella lapillus (Connell, 1961) indicating that predation is a key factor setting the lower limit for this species.  Competition from large fucoids and red algal turfs can also prevent Semibalanus balanoides from extending into lower shore levels (Hawkins, 1983). Decreased emergence is likely to lead to the habitat becoming more suitable for the lower shore species generally found below the biotope, leading to replacement, although the stability of the sediment will mediate the development of fucoid biotopes.

    Sensitivity assessment.   This biotope occurs on the mid-shore and will be sensitive to increased and decreased emergence. As emergence is a key factor structuring the distribution of animals and macroalgae on the shore, resistance to a change in emergence (increase or decrease) is assessed as ‘Low’. Recovery is assessed as ‘High’, (following habitat recovery) and sensitivity is, therefore, assessed as 'Low'.

    Low
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Low
    Low
    Low
    Low
    Help
    Wave exposure changes (local) [Show more]

    Wave exposure changes (local)

    Benchmark. A change in near shore significant wave height of >3% but <5% for more than one year. Further detail

    Evidence

    No direct evidence was found to assess the sensitivity of this biotope to changes in wave exposure at the pressure benchmark. This biotope is recorded from locations that are judged to range from sheltered and moderately sheltered to extremely sheltered (Connor et al., 2004). The degree of wave exposure influences wave height, as in more exposed areas with a longer fetch waves would be predicted to be higher. As this biotope occurs across three wave exposure categories, this was therefore considered to indicate, by proxy, that biotopes in the middle of the wave exposure range would tolerate either an increase or decrease in significant wave height at the pressure benchmark.

    An increase in wave action, exceeding the pressure benchmark, may however alter the character of the biotope. The cobbles and pebbles in the biotope are likely to move much more as a result of increased wave oscillation. The characterizing and associated species would probably accrue damage from abrasion and scour and barnacles trapped on the undersides of overturned pebbles would be unable to feed or respire. In sites with mobile cobbles and boulders increased scour results in lower densities of Littorina spp. compared with other, local sites with stable substratum (Carlson et al., 2006). Littorina littorea regularly have to abandon optimal feeding sites in order to avoid wave-induced dislodgement. This will result in a decreased growth rate (Mouritsen et al., 1999). Increases in wave exposure above the pressure benchmark will probably cause a decrease in population size of Littorina littorea and Semibalanus balanoides.

    Sensitivity assessment. The natural wave exposure range of this biotope is considered to exceed changes at the pressure benchmark and this biotope is considered to have 'High' resistance and 'High' resilience (by default), to this pressure (at the benchmark).  

    High
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    Low
    Low
    Low
    Help

    Chemical Pressures

    Use [show more] / [show less] to open/close text displayed

    ResistanceResilienceSensitivity
    Transition elements & organo-metal contamination [Show more]

    Transition elements & organo-metal contamination

    Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

    Evidence

    This pressure is Not assessed but evidence is presented where available.

    Contamination at levels greater than the benchmark may impact this biotope. However, barnacles, may tolerate fairly high level of heavy metals in nature, for example they possess metal detoxification mechanisms and are found in Dulas Bay, Anglesey, where copper reaches concentrations of 24.5 µg/l, due to acid mine waste (Foster et al., 1978; Rainbow, 1984). Bryan (1984) suggested that gastropods are also rather tolerant of heavy metals. Littorina littorea is tolerant of high TBT levels (Oehlmann et al., 1998) and has been found to be well suited for TBT effect monitoring because the species exists in sufficient numbers for sampling even in regions where a relatively high level of contamination exists. It is often present in areas where the very TBT sensitive dogwhelk Nucella lapillus has disappeared. Although imposex is rare in Littorina littorea strong TBT-toxication may affect a population significantly by reducing reproductive ability (Deutsch & Fioroni, 1996) through the development of intersex. Intersex is defined as a change in the female pallial oviduct towards a male morphological structure (Bauer et al., 1995). However, only sexually immature and juvenile individuals of Littorina littorea are able to develop intersex. Also, owing to the reproductive strategy of Littorina littorea, which reproduces by means of pelagic larvae, populations do not necessarily become extinct as a result of intersex (Casey et al., 1998) and so recoverability is good. It may take some time for the toxicant to be eliminated from the system and conditions to return to normal.

    Littorina littorea has been suggested as a suitable bioindicator species for some heavy metals in the marine environment. Bryan et al. (1983) suggests that the species is a reasonable indicator for Ag, Cd, Pb and perhaps As. It is not found to be a reliable indicator for other metals because of some interactions between metals and regulation of some, such as Cu and Zn (Langston & Zhou Mingjiang, 1986).

    Not Assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Hydrocarbon & PAH contamination [Show more]

    Hydrocarbon & PAH contamination

    Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

    Evidence

    This pressure is Not assessed but evidence is presented where available.

    Littoral barnacles (e.g. Semibalanus balanoides) have a high resistance to oil (Holt et al., 1995) but may suffer some mortality due to the smothering effects of thick oil (Smith, 1968).

    Not Assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Synthetic compound contamination [Show more]

    Synthetic compound contamination

    Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

    Evidence

    This pressure is Not assessed but evidence is presented where available.

    Synthetic compound contamination, at levels greater than the benchmark, is likely to have a variety of effects depending the specific nature of the contaminant and the species group(s) affected. Barnacles have a low resilience to chemicals such as dispersants, dependant on the concentration and type of chemical involved (Holt et al., 1995).

    Not Assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Radionuclide contamination [Show more]

    Radionuclide contamination

    Benchmark. An increase in 10µGy/h above background levels. Further detail

    Evidence

    No evidence was found.

    No evidence (NEv)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    Introduction of other substances [Show more]

    Introduction of other substances

    Benchmark. Exposure of marine species or habitat to one or more relevant contaminants via uncontrolled releases or incidental spills. Further detail

    Evidence

    This pressure is Not assessed.

    Not Assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    De-oxygenation [Show more]

    De-oxygenation

    Benchmark. Exposure to dissolved oxygen concentration of less than or equal to 2 mg/l for one week (a change from WFD poor status to bad status). Further detail

    Evidence

    Semibalanus balanoides can respire anaerobically, so they can tolerate some reduction in oxygen concentration (Newell, 1979). When placed in wet nitrogen, where oxygen stress is maximal and desiccation stress is low, Semibalanus balanoides have a mean survival time of 5 days (Barnes et al., 1963). Littorina littorea have a high tolerance for low oxygen conditions and can easily survive 3-6 days of anoxia  (Storey et al., 2013). In addition, Littorina littorea, is an air breather when emersed, so can respire during the tidal cycle.

    Sensitivity assessment. The key characterizing species, littorinids and Semibalanus balanoides are considered to be ‘Not Sensitive’ to de-oxygenation at the pressure benchmark. The experiments cited as evidence (Storey et al., 2013 and Barnes et al.,1963) exceed the duration and/or magnitude of the pressure benchmark and do not take into account the environmental mitigation of deoxygenation occurring in this biotope.  Biotope resistance is therefore assessed as ‘High’ and resilience as ‘High’ (no effect to recover from), resulting in a sensitivity of 'Not sensitive'.  

    High
    High
    Medium
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    High
    Medium
    High
    Help
    Nutrient enrichment [Show more]

    Nutrient enrichment

    Benchmark. Compliance with WFD criteria for good status. Further detail

    Evidence

    No direct evidence was found to assess this pressure. A slight increase in nutrient levels could be beneficial for barnacles and mussels by promoting the growth of phytoplankton levels and therefore increasing zooplankton levels. However, Holt et al. (1995) predict that smothering of barnacles by ephemeral green algae is a possibility under eutrophic conditions. 

    Littorina littorea occurs on all British and Irish coasts, including lower salinity areas such as this estuarine biotope where nutrient loading is likely to be higher than elsewhere. Higher nutrient levels may benefit the algal substrata and food used by the snail. In situations with nutrient enrichment, primary productivity in terms of biofilms and/ or green algae will generally be enhanced, which may supply more food or more nutrient rich food. This can reduce the browsing distances and periods of Littorina, reducing times spent searching for food (Diaz et al. 2012). After five months of nutrient addition in experimental mesocosms, Littorina abundance and biomass had increased compared to controls. Enriched mesocosms experiments were treated with 32 lM inorganic nitrogen (N) and 2 lM inorganic phosphorus (P) above the background levels in the Oslofjord continuously in the period April–September 2008. These nutrient addition levels are similar to concentrations recorded in eutrophic areas locally (Kristiansen & Paasche, 1982; cited in Diaz et al. 2012) and globally (Cloern, 2001; cited in Diaz et al. 2012).

    Sensitivity assessment. The pressure benchmark is set at a level that is relatively protective and based on the evidence and considerations outlined above the biological assemblage is considered to be 'Not sensitive' at the pressure benchmark. Resistance and resilience are therefore assessed as 'High'.

    High
    High
    Medium
    High
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    Low
    Low
    Low
    Help
    Organic enrichment [Show more]

    Organic enrichment

    Benchmark. A deposit of 100 gC/m2/yr. Further detail

    Evidence

    Organic enrichment may lead to eutrophication with adverse environmental effects including deoxygenation, algal blooms and changes in community structure (see nutrient enrichment and de-oxygenation).   The biotopes occurs in tide swept or wave exposed areas (Connor et al., 2004) preventing a build up of organic matter, so that the biotope is considered to have a low risk of organic enrichment at the pressure benchmark. Little evidence was found to support this assessment, Cabral-Oliveira et al., (2014), found that filter feeders such as Mytilus sp. and the barnacle Chthamalus montagui were more abundant at sites closer to a sewage treatment works, as they could utilise the organic matter inputs as food. 

    Sensitivity assessment. Little empirical evidence was found to support an assessment for Semibalanus balanoides and none for Littorina littorea within this biotope.  As organic matter particles in suspension or re-suspended could potentially be utilised as a food resource by filter feeders present within the biotope (Cabral-Oliveira et al., 2014), overall resistance of the biological assemblage within the biotope is considered to be 'High' and resilience was assessed as 'High', so that this biotope is judged to be 'Not sensitive'. 

     

    High
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    Low
    Low
    Low
    Help

    Physical Pressures

    Use [show more] / [show less] to open/close text displayed

    ResistanceResilienceSensitivity
    Physical loss (to land or freshwater habitat) [Show more]

    Physical loss (to land or freshwater habitat)

    Benchmark. A permanent loss of existing saline habitat within the site. Further detail

    Evidence

    All marine habitats and benthic species are considered to have a resistance of ‘None’ to this pressure and to be unable to recover from a permanent loss of habitat (resilience is ‘Very Low’).  Sensitivity within the direct spatial footprint of this pressure is therefore ‘High’.  Although no specific evidence is described confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

    None
    High
    High
    High
    Help
    Very Low
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Physical change (to another seabed type) [Show more]

    Physical change (to another seabed type)

    Benchmark. Permanent change from sedimentary or soft rock substrata to hard rock or artificial substrata or vice-versa. Further detail

    Evidence

    This biotope is characterized by the hard rock substratum provided by the boulders and cobbles to which the key characterizing species barnacles, limpets and littorinids and the other associated species can firmly attach. Littorinids are found on a variety of shores, including sedimentary so a change in type may not significantly affect this species. A change to a sedimentary substratum would, however, significantly alter the character of the biotope. Changes in substratum type can also lead to indirect effects. For example, Shanks & Wright (1986) observed that limpet mortalities were much higher at sites where the supply of loose cobbles and pebbles were greater, leading to increased abrasion through wave action 'throwing' rocks onto surfaces, a similar effect would be predicted for barnacles and other animals within the biotope. The biotope is considered to have 'No' resistance to this pressure based on a change to a soft sediment substratum, resilience is Very low (the pressure is a permanent change) and sensitivity is assessed as High. Although no specific evidence is described, confidence in this assessment is ‘High’, due to the incontrovertible nature of this pressure.

    None
    High
    High
    High
    Help
    Very Low
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Physical change (to another sediment type) [Show more]

    Physical change (to another sediment type)

    Benchmark. Permanent change in one Folk class (based on UK SeaMap simplified classification). Further detail

    Evidence

    This biotope occurs on mixed substrata (pebbles and cobbles on sand and gravel) where the key characterizing Ulva spp. and Porphyra purpurea and the associated species Semibalanus balanoides can attach. A soft sedimentary habitat or mobile coarse sediments such as gravel or shingle alone would be unsuitable for these species.  Increased sediment instability would also be likely to reduce habitat suitability for littorinids. In sites with mobile cobbles and boulders increased scour results in lower densities of Littorina spp. compared with other, local sites with stable substratum (Carlson et al., 2006). A change to a sedimentary biotope without suitable attachment surfaces would lead to the development of a biological assemblage more typical of the changed conditions.

    Sensitivity assessment. A change to a fine or coarse sedimentary habitat would reduce habitat suitability for this biotope. Therefore, resistance is assessed as ‘None’ and resilience as ‘Very low’ as the change is considered to be permanent so that sensitivity is assessed as 'High'.

    None
    Low
    NR
    NR
    Help
    Very Low
    High
    High
    High
    Help
    High
    Low
    Low
    Low
    Help
    Habitat structure changes - removal of substratum (extraction) [Show more]

    Habitat structure changes - removal of substratum (extraction)

    Benchmark. The extraction of substratum to 30 cm (where substratum includes sediments and soft rock but excludes hard bedrock). Further detail

    Evidence

    Extraction of the boulders, cobbles and pebbles on which this biotope occurs would remove the characterizing species and their habitat. Resistance is assessed as 'None' and resilience (following habitat recovery) is assessed as 'High'. Sensitivity is therefore assessed as 'Medium'.

    None
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Medium
    Low
    Low
    Low
    Help
    Abrasion / disturbance of the surface of the substratum or seabed [Show more]

    Abrasion / disturbance of the surface of the substratum or seabed

    Benchmark. Damage to surface features (e.g. species and physical structures within the habitat). Further detail

    Evidence

    The key characterizing and associated species within this biotope typically occur on the rock surfaces where they will be exposed to abrasion. Although barnacles and littorinids are protected by hard shells or plates, abrasion may damage and kill individuals or detach these. All removed barnacles would be expected to die as there is no mechanism for these to reattach. Although littorinids may be able to repair shell damage, broken shells while healing will expose the individual to more risk of desiccation and predation.  Evidence for the effects of abrasion are provided by a number of experimental studies on trampling (a source of abrasion) and on abrasion by wave thrown rocks and pebbles.

    The effects of trampling on barnacles appears to be variable with some studies not detecting significant differences between trampled and controlled areas (Tyler-Walters & Arnold, 2008). However, this variability may be related to differences in trampling intensities and abundance of populations studied. The worst case incidence was reported by Brosnan & Crumrine (1994) who reported that a trampling pressure of 250 steps in a 20x20 cm plot one day a month for a period of a year significantly reduced barnacle cover at two study sites. Barnacle cover reduced from 66 % to 7 % cover in 4 months at one site and from 21 % to 5 % within 6 months at the second site. Overall barnacles were crushed and removed by trampling. Barnacle cover remained low until recruitment the following spring. Long et al. (2011) also found that heavy trampling (70 humans /km/hrs) led to reductions in barnacle cover. 

    Single step experiments provide a clearer, quantitative indication of sensitivity to direct abrasion. Povey & Keough (1991) in experiments on shores in Mornington peninsula, Victoria, Australia, found that in single step experiments 10 out of 67 barnacles, (Chthamlus antennatus about 3mm long),  were crushed.

    In sites with mobile cobbles and boulders increased scour results in lower densities of Littorina spp. compared with other, local sites with stable substratum (Carlson et al., 2006).

    Sensitivity assessment. The impact of surface abrasion will depend on the footprint, duration and magnitude of the pressure. Based on evidence from the step experiments and the relative robustness of these species, resistance, to a single abrasion event is assessed as ‘Medium’ and recovery as ‘High’, so that sensitivity is assessed as ‘Low’.  Resistance will be lower (and hence sensitivity greater) to abrasion events that exert a greater crushing force than the trampling examples the assessment is based on).

    Medium
    High
    High
    Medium
    Help
    High
    High
    Medium
    High
    Help
    Low
    High
    Medium
    Medium
    Help
    Penetration or disturbance of the substratum subsurface [Show more]

    Penetration or disturbance of the substratum subsurface

    Benchmark. Damage to sub-surface features (e.g. species and physical structures within the habitat). Further detail

    Evidence

    The cobbles and pebbles in the biotope are likely to move as a result of penetration and/or sub surface disturbance. The characterizing and associated species would probably accrue damage from abrasion and scour and barnacles and littorinids trapped on the undersides of overturned pebbles would be unable to feed or respire. In sites with mobile cobbles and boulders increased scour results in lower densities of Littorina spp. compared with other, local sites with stable substratum (Carlson et al., 2006). 

    Sensitivity assessment.  This biotope is considered to have 'Low' resistance and 'High' resilience, to this pressure and sensitivity is therefore assessed as 'Low'.

    Low
    High
    Low
    NR
    Help
    High
    High
    High
    High
    Help
    Low
    High
    Low
    Low
    Help
    Changes in suspended solids (water clarity) [Show more]

    Changes in suspended solids (water clarity)

    Benchmark. A change in one rank on the WFD (Water Framework Directive) scale e.g. from clear to intermediate for one year. Further detail

    Evidence

    Intertidal biotopes will only be exposed to this pressure when submerged during the tidal cycle and thus have limited exposure. Siltation, which may be associated with increased suspended solids and the subsequent deposition of these is assessed separately (see siltation pressures). This mixed substrata biotope occurs in estuaries in sheltered conditions where levels of suspended sediments are likely to be raised from riverine inputs and from re-suspension of sediments within the biotope. The level of suspended solids depends on a variety of factors including: substrate type, river flow, tidal height, water velocity, wind reach/speed and depth of water mixing (Parr et al. 1998). Transported sediment including silt and organic detritus can become trapped in the system where the river water meets seawater. Dissolved material in the river water flocculates when it comes into contact with the salt wedge pushing its way upriver. These processes result in elevated levels of suspended particulate material with peak levels confined to a discrete region (the turbidity maximum), usually in the upper-middle reaches, which moves up and down the estuary with the tidal ebb and flow.

    A change in suspended solids at the pressure benchmark is likely to refer to changes on the UK TAG scale (2014) from intermediate (10-100 mg/l to medium turbidity (100-300 mg/l) or high turbidity (>300 mg/l). Increased suspended sediment may reduce growth rates in barnacles due to the energetic costs of cleaning sediment particles from feeding apparatus. Elminius modestus is more tolerant of turbidity than Semibalanus balanoides and may become the dominant barnacle. However, this will not alter the nature of the biotope. Littorina littorea is found in turbid estuaries where suspended sediment levels are high.

    Sensitivity assessment. This biotope is not considered sensitive to decreased suspended sediments. An increase in suspended solids may increase the level of scour and deposition in this sheltered biotope and inhibit larval settlement. Increased suspended solids may reduce feeding rates of Semibalanus balanoides, although this may be compensated where the increased load of solids is due to organic matter inputs. Biotope resistance to an increase is assessed as 'Medium' and resilience as ‘High’ (following habitat recovery) so that the biotope is considered to have 'Low' sensitivity.

    Medium
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Low
    Low
    Low
    Low
    Help
    Smothering and siltation rate changes (light) [Show more]

    Smothering and siltation rate changes (light)

    Benchmark. ‘Light’ deposition of up to 5 cm of fine material added to the seabed in a single discrete event. Further detail

    Evidence

    More direct evidence to assess this pressure was found for the characterizing species Littorina littorea, than Semibalanus balanoides. However, the lower limits of Semibalanus balanoides (as Balanus balanoides) appear to be set by levels of sand inundation on sand-affected rocky shores in New Hampshire (Daly & Mathieson, 1977), suggesting that this species is sensitive to the deposition of relatively coarse sediments, although whether this is due to repeated scour events removing juveniles rather than siltation effects (i.e. smothering, prevention of feeding) is not clear.

    Littorina littorea through grazing and bulldozing actions may directly aid the removal of silts and sediments and remove the algal films that may accumulate silts (Bertness, 1984). On a protected New England rocky beach, Bertness (1984) showed how accumulation of sediments, due to the removal of the snail Littorina littorea changed the character of the habitat to one more typical of sedimentary habitats, with a decrease in the abundance of organisms characteristic of hard-bottom habitats, such as barnacles and encrusting algae (cited from Airoldi et al. 2003). Chandrasekara & Frid (1998) specifically tested the siltation tolerance of Littorina littorea. Burial to 5 cm caused mortality within 24 hours at simulated summer and winter temperatures if the snails could not crawl out of the sediment (Chandrasekara & Frid, 1998). If the sediment is well oxygenated and fluid (as with high water, high silt content) a few snails (1-6 out of 15 in the experiment, depending on temperature, sediment and water content) may be able to move back up through 5 cm of sediment (Chandrasekara  & Frid, 1998).  Approximately half of the test individuals could not regain the surface from 1 cm of burial except in the most favourable conditions (low temperatures, high water, high silt when a majority (10 out of 15) of the test cohort surfaced. Field observations support the findings that Littorina littorea are generally unable to survive smothering. Albrecht & Reise (1994) observed a population of Littorina littorea in a sandy bay near the Sylt island in the North Sea. They found that the accretion of mud within Fucus strands and subsequent covering of Littorina by the sediment resulted in them suffocating and a significant reduction in their abundance.

    Sensitivity assessmentSemibalanus balanoides is found permanently attached to hard substrates and is a suspension feeder. This species, therefore, has no ability to escape from silty sediments which would bury individuals and prevent feeding and respiration.   However, no direct evidence for sensitivity to siltation was found. Resistance to siltation is assessed as ‘Low’ for  Littorina littorea based primarily on observations and experiments of Airoldi & Hawkins, (2007) and Chandrasekara & Frid, (1998), who demonstrated negative effects at deposit thicknesses at or far lower than the pressure benchmark.  Within this sheltered biotope wave action or water flows are unlikely to rapidly mobilise and remove deposits alleviating the effect of smothering.  Even small deposits of sediments are likely to result in local removal of littorinids. Biotope resistance is assessed as ‘Low’ based on the characterizing species. Resilience is assessed as ‘High’ and sensitivity is therefore considered to be ‘Low’.  Repeated deposition events, coupled with changes in water flow and wave action may lead to the establishment of Ulva spp. that trap sediments, this would significantly alter the character of the biotope.

    Low
    High
    High
    High
    Help
    High
    High
    High
    High
    Help
    Low
    High
    High
    High
    Help
    Smothering and siltation rate changes (heavy) [Show more]

    Smothering and siltation rate changes (heavy)

    Benchmark. ‘Heavy’ deposition of up to 30 cm of fine material added to the seabed in a single discrete event. Further detail

    Evidence

    More direct evidence to assess this pressure was found for the characterizing species Littorina littorea, than Semibalanus balanoides. However, the lower limits of Semibalanus balanoides (as Balanus balanoides) appear to be set by levels of sand inundation on sand-affected rocky shores in New Hampshire (Daly & Mathieson, 1977), suggesting that this species is sensitive to the deposition of relatively coarse sediments, although whether this is due to repeated scour events removing juveniles rather than siltation effects (i.e. smothering, prevention of feeding) is not clear.

    The evidence for siltation effects on the characterizing species, Littorina littorea and Patella vulgata is outlined above for ‘light’ deposition. In summary, experiments by Chandrasekara & Frid, (1998) and Airoldi & Hawkins (2007) , supported by field observation, indicate that Littorina littorea would be unable to escape from sediment deposits of 30cm thickness and would rapidly die.

    Sensitivity assessment. Sensitivity to this pressure will be mediated by site-specific hydrodynamic conditions and the footprint of the impact. Where a large area is covered sediments may be shifted by wave and tides rather than removed. Semibalanus balanoides is found permanently attached to hard substrates and is a suspension feeder. This species, therefore, has no ability to escape from silty sediments which would bury individuals and prevent feeding and respiration.  Even small deposits of sediments are likely to result in local removal and death of littorinids. Resistance to siltation at the benchmark level is assessed as ‘None’ for Littorina littorea based primarily on the observations and experiments of Chandrasekara & Frid (1998), who demonstrated negative effects at deposit thicknesses far lower than the pressure benchmark.  Within this sheltered biotope wave action or water flows are unlikely to rapidly mobilise and remove deposits alleviating the effect of smothering.   Biotope resistance is assessed as ‘None’ based on the characterizing species. Resilience is assessed as ‘High’ and sensitivity is therefore considered to be ‘Medium’.  

    None
    High
    Medium
    High
    Help
    High
    High
    High
    High
    Help
    Medium
    High
    Medium
    High
    Help
    Litter [Show more]

    Litter

    Benchmark. The introduction of man-made objects able to cause physical harm (surface, water column, seafloor or strandline). Further detail

    Evidence

    Thompson et al., (2004) demonstrated that Semibalanus balanoides, kept in aquaria, ingested microplastics within a few days. However, the effects of the microplastics on the health of exposed individuals have not been identified. There is currently no evidence to assess the level of impact. 

    Not Assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Not assessed (NA)
    NR
    NR
    NR
    Help
    Electromagnetic changes [Show more]

    Electromagnetic changes

    Benchmark. A local electric field of 1 V/m or a local magnetic field of 10 µT. Further detail

    Evidence

    No evidence.

    No evidence (NEv)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    Underwater noise changes [Show more]

    Underwater noise changes

    Benchmark. MSFD indicator levels (SEL or peak SPL) exceeded for 20% of days in a calendar year. Further detail

    Evidence

    Not relevant. Wave action on exposed shores is likely to generate high levels of underwater noise. Other sources are not considered likely to result in effects on the biotope.

    Not relevant (NR)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help
    Introduction of light or shading [Show more]

    Introduction of light or shading

    Benchmark. A change in incident light via anthropogenic means. Further detail

    Evidence

    No direct evidence to assess this pressure was found for the key characterizing species Patella vulgata and the littorinids. As both species occur on open rock and in crevices and under Fucus canopies they are considered tolerant of a range of light conditions. Semibalanus balanoides sheltered from the sun grew bigger than unshaded individuals (Hatton, 1938; cited in Wethey, 1984), although the effect may be due to indirect cooling effects rather than shading. Light levels have, however been demonstrated to influence a number of phases of the reproductive cycle in Semibalanus balanoides.  In general light inhibits aspects of the breeding cycle. Penis development is inhibited by light (Barnes & Stone, 1972) while Tighe-Ford (1967) showed that constant light inhibited gonad maturation and fertilization. Davenport & Crisp (unpublished data from Menai Bridge, Wales, cited from Davenport et al., 2005) found that experimental exposure to either constant darkness, or 6 h light: 18 h dark photoperiods induced autumn breeding in Semibalanus. They also confirmed that very low continuous light intensities (little more than starlight) inhibited breeding. Latitudinal variations in timing of the onset of reproductive phases (egg mass hardening) have been linked to the length of darkness (night) experienced by individuals rather than temperature (Davenport et al., 2005). Changes in light levels associated with climate change (increased cloud cover) were considered to have the potential to alter timing of reproduction (Davenport et al., 2005) and to shift the range limits of this species southward. However, it is not clear how these findings may reflect changes in light levels from artificial sources, and whether observable changes would occur at the population level as a result. There is, therefore, 'No evidence' on which to base an assessment.

    No evidence (NEv)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    Barrier to species movement [Show more]

    Barrier to species movement

    Benchmark. A permanent or temporary barrier to species movement over ≥50% of water body width or a 10% change in tidal excursion. Further detail

    Evidence

    No direct evidence was found to assess this pressure. As the larvae of the key characterizing species Patella vulgata, Semibalanus balanoides and Littorina littorea are planktonic and are transported by water movements, barriers that reduce the degree of tidal excursion may alter larval supply to suitable habitats from source populations. However the presence of barriers may enhance local population supply by preventing the loss of larvae from enclosed habitats.  The associated macroalgae and Littorina saxatilis have either limited dispersal or produce crawl away juveniles rather than pelagic larvae (direct development). Barriers and changes in tidal excursion are not considered relevant to these species as dispersal is limited. As the key characterizing species are widely distributed and have larvae capable of long distance transport, resistance to this pressure is assessed as 'High' and resilience as 'High' by default. This biotope is therefore considered to be 'Not sensitive'. 

    High
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Not sensitive
    Low
    Low
    Low
    Help
    Death or injury by collision [Show more]

    Death or injury by collision

    Benchmark. Injury or mortality from collisions of biota with both static or moving structures due to 0.1% of tidal volume on an average tide, passing through an artificial structure. Further detail

    Evidence

    Not relevant’ to seabed habitats.  NB. Collision by grounding vessels is addressed under surface abrasion. 

    Not relevant (NR)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help
    Visual disturbance [Show more]

    Visual disturbance

    Benchmark. The daily duration of transient visual cues exceeds 10% of the period of site occupancy by the feature. Further detail

    Evidence

    Not relevant.

    Not relevant (NR)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help
    Not relevant (NR)
    NR
    NR
    NR
    Help

    Biological Pressures

    Use [show more] / [show less] to open/close text displayed

    ResistanceResilienceSensitivity
    Genetic modification & translocation of indigenous species [Show more]

    Genetic modification & translocation of indigenous species

    Benchmark. Translocation of indigenous species or the introduction of genetically modified or genetically different populations of indigenous species that may result in changes in the genetic structure of local populations, hybridization, or change in community structure. Further detail

    Evidence

    The characterizing species, Semibalanus balanoides and Littorina littorea and other common rocky shores species within the biotope, with the exception of Mytilus edulis which occurs in low densities, are not subject to translocation or cultivation. Commercial cultivation of Mytilus edulis involves the collection of juvenile mussel ‘seed’ or spat (newly settled juveniles ca 1-2cm in length) from wild populations, with subsequent transportation around the UK for re-laying in suitable habitats. As the seed is harvested from wild populations from various locations the gene pool will not necessarily be decreased by translocations.  Movement of mussel seed has the potential to transport pathogens and non-native species (see sensitivity assessments for Mytilus edulis bed biotopes). A review by Svåsand et al. (2007) concluded that there was a lack of evidence distinguishing between different Mytilus edulis populations to accurately assess the impacts of hybridisation with the congener Mytilus galloprovincialis and in particular how the gene flow may be affected by aquaculture.  Therefore, it cannot be confirmed whether farming will have an impact on the genetics of this species beyond a potential for increased hybridisation.

    Sensitivity assessment. No direct evidence was found regarding the potential for negative impacts of translocated mussel seed on wild Mytilus edulis populations.  While it is possible that translocation of mussel seed could lead to genetic flow between cultivated beds and local wild populations, there is currently no evidence to assess the impact (Svåsand et al., 2007).  Hybrids would perform the same ecological functions as Mytilus edulis so that any impact relates to genetic integrity of a bed alone.  This impact is considered to apply to all mussel biotopes equally, as the main habitat forming species Mytilus edulis is translocated.  Also, given the uncertainty in identification of the species, habitats or biotopes that are considered to be characterized by Mytilus edulis may in fact contain Mytilus galloprovincialis, their hybrids or a mosaic of the three. Presently, there is no evidence of impact resulting from genetic modification and translocation on Mytilus edulis beds in general or the clumps that characterize this biotope.  

    No evidence (NEv)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    No evidence (NEv)
    NR
    NR
    NR
    Help
    Introduction or spread of invasive non-indigenous species [Show more]

    Introduction or spread of invasive non-indigenous species

    Benchmark. The introduction of one or more invasive non-indigenous species (INIS). Further detail

    Evidence

    This biotope may be most vulnerable to invasive non-indigenous species that can out-compete the characterizing species and associated assemblage for space or species that predate on the characterizing species. The Australasian barnacle Austrominius modestus, the Pacific oyster Magallana gigas and the tunicates Botrylloides diegensis and Corella eumyota may be most likely to occur in this biotope. 

    The non-native crab Hemigrapsus sanguineus was recorded in the UK (Sweet & Sewell, 2014). It could potentially be a significant predator of intertidal invertebrates. Significant reductions in common shore crab abundance and mussel density have been reported where the Asian shore crab has achieved high densities in mainland Europe (Sweet & Sewell, 2014). However, Brousseau & Goldberg (2007) found that even at high crab densities the effects of predation on the density of Semibalanus balanoides were limited as continued recruitment offset predation.

    The Australasian barnacle Austrominius (previously Elminius) modestus was introduced to British waters on ships during the Second World War. However, its overall effect on the dynamics of rocky shores has been small as Austrominius modestus has replaced some individuals of a group of co-occurring barnacles (Raffaelli & Hawkins, 1999). Austrominius modestus can tolerate lower salinities than the native barnacle Semibalanus balanoides (Gomes-Filho, et al., 2010) and may dominate this biotope, however, this is not considered to lead to a significant change in biotope character or function. 

    Littorina littorea feeds on Sargassum muticum so shoreline colonization by Sargassum would mean that food was still available for the littorinid (Withers et al. 1975).  Littorina littorea also grazes on degraded or stressed Didemnum vexillum individuals (Valentine et al., 2007) and Codium fragile ssp. tomentosoides (Schiebling et al., 2008), so may gain some benefit from the presence of these species. However, the mobility of the substratum, the variable salinity and the lack of tidepools may inhibit the colonization of this biotope by invasive, non-indigenous macroalgae.

    Other INIS that can settle and occupy hard substratum may threaten this biotope in the future if they become established. The tunicate Asterocarpa humilis, the hydroid Schizoporella japonica and the bryozoan Watersipora subatra (Bishop, 2012c; Bishop, 2015a; Wood, 2015) are currently only recorded from artificial hard substratum in the UK and it is not clear what their established range and impacts in the UK would be.

    The Pacific oyster, Magallana (syn. Crassostrea) gigas, is native to warm temperate regions from the northwest Pacific to Japan and northeast Asia, including Cape Mariya (Russia) to Hong Kong (China) (Carrasco & Baron, 2010; GBNNSS, 2011, 2012). It is a fast-growing and tolerant species that has become a successful invader in the coastal waters of all continents, aside from Antarctica (Wrange et al., 2010; Carrasco & Baron, 2010; Padilla, 2010). Magallana gigas is recognised as a beneficial and important species in aquaculture worldwide (Padilla, 2010). It was initially introduced for aquaculture in Europe and the UK in the 1960s due to a decline in the Portuguese oyster (Crassostrea angulata) and the European flat oyster (Ostrea edulis) (Spencer et al., 1994; GBNNSS, 2011, 2012; Humphreys et al., 2014 cited in Alves et al., 2021; Hansen et al., 2023).

    Since introduction, the species has invaded and established self-sustaining natural populations throughout Europe from the North Sea, Wadden Sea and Scandinavian coastlines to the Atlantic coastlines of Spain and Portugal, as well as the Mediterranean and Adriatic Sea (Wrange et al., 2010; GBNNSS, 2011, 2012; Ezgeta-Balic et al., 2019; Spagnolo et al., 2019; Bergstrom et al., 2021; Hansen et al., 2023). In the UK, the species predominantly occurs around the southern and western coastlines (OBIS, 2024; NBN, 2024). Shipping activity has also been associated with the introduction of Magallana gigas in the northeastern Adriatic Sea, where it was not introduced for aquaculture (Ezgeta-Balic et al., 2019). It was also suggested that some Magallana gigas populations were established in southwest England from France possibly via fouling on ships (GBNNSS, 2011, 2012; Padilla, 2010; Ezgeta-Balic et al., 2019).

    Magallana gigas has a high fecundity, a long-lived pelagic larval phase (2 to 4 weeks) and can produce up to 200 million eggs during spawning (Herbert et al., 2012, 2016; Alves et al., 2021; Wood et al., 2021; Hansen et al., 2023). Hence, as a broadcast spawner, it has a high dispersal potential of more than 1000 km (Padilla, 2010; Wood et al., 2021). Larval mortality can be as large as 99%, as larvae are sensitive to environmental conditions (Alves et al., 2021). However, adults are long-lived so populations can survive with infrequent recruitment (Padilla, 2010). Larval dispersal and mass spawning events have facilitated the settlement and establishment of Pacific oysters, as seen in the Oosterschelde estuary, Netherlands (Hansen et al., 2023). It has been suggested that the spread of the Pacific oyster in Scandinavia is due to northward larval drift on tidal and wind-driven currents (Hansen et al., 2023). Wood et al. (2021) suggested that larval dispersal of the Pacific oyster from populations within and outside the UK was possible via unaided (passive) transport by currents, but that aquaculture and offshore structures (e.g. windfarms) increased the risk of the invasive species spreading and the geographical extent of spread.

    Magallana gigas is an ecosystem engineer and can dramatically change habitat structure when it invades. Once successfully settled, groups of Pacific oysters may form dense aggregations, potentially forming a reef, which in some regions can reach densities of 700 individuals m2 (Herbert et al., 2012, 2016). Once, the density of live or dead Pacific oysters reaches or exceeds 200 ind./m2 little of the underlying substratum remains visible (Herbert et al., 2016). These reefs can stabilize the sediment surface locally (Troost, 2010). When such reefs are formed or, particularly when the species colonizes soft sediments such as mud or sand, it can change and affect local communities, by creating hard substrata for mobile species, which might not otherwise be present before the invasion (Padilla, 2010). However, Hansen et al. (2023) suggested that no immediate ecosystem risk is observed where the Pacific oyster occurs sporadically.

    Magallana gigas requires hard substrata for successful settlement and establishment, including littoral rock, bedrock, chalk, bare boulders, cobbles and pebbles and shells (Kochmann, 2012; Kochmann et al., 2013; Mckinstry & Jensen, 2013; Herbert et al., 2016; Tillin et al., 2020). It also prefers mudflats with mixed sediment composed of shingle and sand, attaching to whatever hard substrata are available within otherwise unsuitable fine muddy sediment (Spencer et al., 1994; Mckinstry & Jensen, 2013; Tillin et al., 2020).

    Magallana gigas has been reported from estuaries growing on intertidal mudflats, sandflats, and other soft sediments (Padilla, 2010; Herbert et al., 2016; Cabral et al., 2020). The settlement of spat on hard substrata within sediments has been observed in the estuaries of the River Dart, Exe, Fal, Fowey, Tamar, Teign, and Yealm in Devon and Cornwall, the Menai Straits, Wales and large estuaries of Lough Swilly, Lough Foyle and the Shannon in Ireland, and the Tagus Estuary in Portugal (Spencer et al., 1994; Kochmann, 2012; Kochmann et al., 2013; Cabral et al., 2020). In Lough Swilly, Lough Foyle and the Shannon, the Pacific oyster was often associated with intertidal mud or sandflats (Kochmann et al., 2013). In contrast, the Pacific oysters were absent from sandflat areas in Poole Harbour (Mckinstry & Jensen, 2013).

    Although shorelines comprised of mainly mud were suggested to be unsuitable for spat settlement (Spencer et al., 1994), the presence of smaller hard substrata, such as shells or pebbles, can enable larvae to settle (Tillin et al., 2020). For example, in the River Teign estuary, Pacific oyster settlement was observed on shell-covered ground mainly attached to mussel shells, and occasionally attached to cockles, stones and common periwinkle (Littorina littorea) shells on a mud flat in the estuarine intertidal zone otherwise mainly comprised of sand and mud (Spencer et al., 1994). In addition, the Blue Lagoon on the north shore of Poole Harbour had the highest abundance of oysters on mud mixed with shingle and shell (Mckinstry & Jensen, 2013). Outside of the Blue Lagoon, oysters were also recorded on mixed substrata composed of mud, gravel, and shell (McKinstry & Jensen, 2013). In the Wadden Sea, the distribution of Magallana gigas on soft sediment shores can overlap with native bivalve species such as Cerastoderma edule, Macoma balthica and Scrobicularia plana (Troost, 2010; Herbert et al., 2012, 2016). However, these native species are likely to occur at higher shore elevations compared to the lower shore habitats preferred by the Pacific oyster (Troost, 2010; Herbert et al., 2012, 2016). For example, in the Wadden Sea greater densities of Cerastoderma edule and Macoma balthica were found above the level of Magallana gigas reef development (Herbert et al., 2012). Tillin et al. (2020) concluded that while successful invasions occurred on mudflats, Magallana gigas prefers mixed substrata. Fine mud sediments without hard substrata (such as small stones, gravel, and shell) are unlikely to be suitable (Tillin et al., 2020). The speed of Magallana gigas reef formation on soft substrata seems to be dependent on the amount of hard substrata present, developing quicker once there is a sufficient amount (Troost, 2010). Bergstrom et al. (2021) reported that the presence of Magallana gigas was partially dependent on increasing gravel content up to 15% but remained stable with increasing percentages (measured up to 80%).

    The oyster reefs, in the Wadden Sea and Brittany, on littoral muddy and sandy habitats formed predominantly at lower tidal levels from Mean Low Water levels to the shallow subtidal (Troost, 2010; Herbert et al., 2012, 2016). Pacific oyster spatfall was recorded in the estuarine intertidal zone on areas with hard substrata of stone and shell, particularly between the low water of spring tides and high water of neap tides, such as in the Menai Strait (Spencer et al., 1994).

    At high densities the Pacific oyster reef smothers sediment, provides hard substrata in an otherwise sedimentary environment with additional niches for colonization by other species that require hard substratum (e.g. barnacles), and changes surface roughness and local hydrography (Troost, 2010; Herbert et al., 2012, 2016; Tillin et al., 2020). Lejart & Hily (2011) found the surface available for epibenthic species in the Bay of Brest, increased 4-fold when oysters were present on mud, for every 1 m2 of colonized substrata the oyster reef added 3.87 m2 of surface area on mud sediment. An increase in available settlement substrata, free of epibiota, could be the reason oyster reefs see an increase in macrofaunal abundance. This can change the community composition and habitat structure in reefs on soft mud sediments, creating new habitats for an increasing abundance of infaunal and epibenthic mobile species (Kochmann et al., 2008; Lejart & Hily, 2011; Zwerschke et al., 2018). Results have shown 38% of species present in the oyster reefs on mud were characteristic of rocky substratum habitats (Lejart & Hily, 2011).

    In the Bay of Brest, Pacific oyster reefs had a higher diversity and species richness than surrounding mud habitats, including the mud underneath the reefs, where the population was dominated by carnivores rather than suspension the feeders found on the mudflats (Lejart & Hily, 2011; Herbert et al., 2012). In addition, in muddy habitats around the UK, Ireland and Northern France, macrofaunal diversity increased as Pacific oyster density increased but epifaunal diversity decreased as oyster densities increased (Zwerschke et al., 2018). It was suggested that the decrease in epifaunal diversity was due to the decrease in settlement space and an increase in habitat fragmentation because of dense oyster assemblages (Zwerschke et al., 2018).

    Green & Crowe (2014) examined the effects of Magallana gigas density in experimental plots (0.25 m2) in Lough Swilly and Lough Foyle, Ireland. The number of species and species diversity increased with oyster cover on mudflats, depending on site and duration. The assemblage also changed due to the increased abundance of barnacles and bryozoans on the oyster shells and polychaetes within the sediment (Green & Crowe, 2014). Zwerschke et al. (2020) suggested that Pacific oyster beds could replace the ecosystem services provided by native oysters, in areas where native oysters had been lost. Morgan et al. (2021) suggested that the smothering of sediment habitats could prevent fish and bird species from feeding on infauna like worms, molluscs, and crustaceans. Also, the development of tidepools within mixed Pacific oyster and blue mussel reefs in soft sediment intertidal sites has been observed in the Wadden Sea, which can create new microhabitats within the reefs (Weniger et al., 2022).

    Dense aggregations of Magallana gigas on a former mussel bed showed increased abundance and biomass of Littorina littorea in the Wadden Sea (Markert et al. 2010). However, Eschweiler & Buschbaum (2011) found that juvenile Littorina littorea could carry Magallana gigas and Crepidula fornicata as epibionts. Body dry weight of snails without oyster overgrowth was twice as high compared to winkles covered with oysters. Also, the crawling speed of snails with oyster epigrowth was significantly slowed down and about ten times lower than in unfouled periwinkles. Additionally, oyster epibionts caused a strong decrease in reproductive output. In laboratory experiments, egg production of fouled Littorina littorea was about 100-fold lower than in affected individuals. Field surveys in different years and habitats demonstrated that up to 10% of individuals occurring on epibenthic bivalve beds and up to 25% of snails living on sand flats may be fouled by Magallana gigas.

    Pacific oysters have been found to reduce the proportion of fine particles and increase the proportion of large particles in the mud under the reef (Lejart & Hily, 2011). The evidence suggests that Pacific oyster reefs change sediment characteristics, by affecting nutrient cycling and increasing the organic content of sediment, sand-to-silt ratio and levels of porewater ammonium (Kochmann et al., 2008; Padilla, 2010; Wagner et al., 2012 cited in Tillin et al., 2020; Green & Crowe, 2014; Herbert et al., 2012, 2016; Zwerschke et al., 2020; Hansen et al., 2023). Zwerschke et al. (2020) found no significant differences in nutrient cycling rates of native oyster beds or Magallana gigas beds or their associated benthic communities, in experimental plots in Ireland. Persistent changes in the rates of nutrient cycling were driven by the density and presence of oysters (Zwerschke et al., 2020).

    The deposition of faeces and pseudo-faeces by Magallana gigas can increase the toxic levels of sulphide in sediments and associated hypoxic sediment conditions, which can reduce photosynthesis and growth in eelgrass (Kelly & Volpe, 2007). Faecal deposition and hypoxia have also been suggested to explain a reduction in species diversity in the sediment underlying high-density oyster reefs (Green & Crowe, 2013, 2014; Herbert et al., 2016). However, Lejart & Hily (2011) observed no organic or silt enrichment by Pacific oysters in mud beneath oyster reefs in the Bay of Brest, and no significant difference in the amount of organic matter found in the mud underneath oyster reefs and on bare mud not colonized by the oyster. The biodeposits excreted by the oyster may be washed away by powerful tides and currents seen in the Bay of Brest and the effects of organic enrichment at oyster reefs might be minimal due to wave action (Lejart & Hily, 2011).

    The carpet sea squirt Didemnum vexillum (syn. Didemnum vestitum; Didemnum vestum) is a colonial ascidian with rapidly expanding populations that have invaded most temperate coastal regions around the world (Kleeman, 2009; Stefaniak et al., 2012; Tillin et al., 2020). It is an ‘ecosystem engineer’ that can change or modify invaded habitats and alter biodiversity (Griffith et al., 2009; Mercer et al., 2009). Didemnum vexillum has colonized and established populations in the northeast Pacific, Canadian and USA coast; New Zealand; France, Spain, and the Wadden Sea, Netherlands; the Mediterranean Sea and Adriatic Sea (Bullard et al., 2007; Coutts & Forrest, 2007; Dijkstra et al., 2007; Valentine et al., 2007a; Valentine et al., 2007b; Lambert, 2009; Hitchin, 2012; Tagliapietra et al., 2012; Gittenberger et al., 2015; Vercaemer et al., 2015; Mckenzie et al., 2017; Cinar & Ozgul, 2023; Holt, 2024). In the UK, Didemnum vexillum has colonized Holyhead marina and Milford Haven, Wales; the west coast of Scotland (marinas around Largs, Clyde, Loch Creran and Loch Fyne), South Devon (Plymouth, Yealm, and Dartmouth estuaries), the Solent, northern Kent, Essex, and Suffolk coasts (Griffith et al., 2009; Lambert, 2009; Hitchin, 2012; Michin & Nunn, 2013; Bishop et al., 2015; Mckenzie et al., 2017; Tillin et al., 2020, Holt, 2024; NBN, 2024).

    Although a widespread invader, Didemnum vexillum has a limited ability for natural dispersal since the pelagic larvae remain in the water column for a short time (up to 36 hours). Therefore, it has a short dispersal phase that can allow the species to build localized populations (Herborg et al., 2009; Vercaemer et al., 2015; Holt, 2024). However, Bullard et al. (2007) suggested that Didemnum vexillum can form new colonies asexually by fragmentation. Colonies can produce long tendrils from an encrusting colony, which can fragment, disperse and settle, attaching to suitable hard substrata elsewhere (Bullard et al., 2007; Lambert, 2009; Stefaniak & Whitlatch, 2014). A fragmented colony can spread naturally for up to three weeks transported by ocean currents, attached to floating seaweed, seagrass or other floating biota, or as free-floating spherical colonies (Bullard et al., 2007; Lengyel et al., 2009; Stefaniak & Whitlatch, 2014; Holt, 2024). Fragments can reattach to suitable substrata within six hours of contact. Fragments have the potential to disperse around 20 km before reattachment (Lengyel et al., 2009). Valentine et al. (2007a) reported that colonies of Didemnum vexillum enlarged by 6 to 11 times by asexual budding after 15 days and enlarged 11 to 19 times after 30 days. Valentine et al. (2007a) concluded fragments could successfully grow, survive, and help to spread Didemnum vexillum.

    While natural fragmentation of tendrils is thought to allow Didemnum vexillum to invade longer distances and increase its dispersal potential, Stefaniak & Whitlatch (2014) found that only one tendril out of 80 reattached to the flat, bare substrata used in their study, because tendrils required an extensive (at least eight hour) period of contact to reattach. Stefaniak & Whitlatch (2014) suggested that once fragmented from a colony, the success of tendril reattachment was limited, and reattachment was not a major contributor to the invasive success of Didemnum vexillum. However, Stefaniak & Whitlatch (2014) also found that larvae-packed tendril fragments may increase natural dispersal distance, reproduction, and invasive success of Didemnum vexillum, and increase the distance larvae can travel. Not all colonies produce tendrils at all locations.

    Human-meditated transport via aquaculture facilities, boat hulls, commercial fishing vessels, and ballast water is probably the most important vector that has aided the long-distance dispersal of Didemnum vexillum and explains its prevalence in harbours and marinas (Bullard et al., 2007; Dijkstra et al., 2007; Griffith et al., 2009; Herborg et al., 2009). Fragmentation of colonies during transport or human disturbance (such as trawling or dredging) could indirectly disperse the species and enable it to find suitable conditions for establishment (Herborg et al., 2009). For example, in oyster farms in British Columbia, large fragments of Didemnum sp. come off oyster strings when they are pulled out of water and other fragments can be pulled off oysters and mussels and thrown back into the water, which is likely to aid dispersal of the invasive species (Bullard et al., 2007). Dijkstra et al. (2007) hypothesised that Didemnum sp. was introduced to the Gulf of Maine with oyster aquaculture in the Damariscotta River and transported via Pacific oysters.

    Didemnum vexillum was likely introduced into the UK from northern Europe or Ireland via poorly maintained or not antifouled vessels, movement of contaminated shellfish stock and aquaculture equipment, or via marine industries such as oil, gas, renewables, and dredging (Holt, 2024). Recent evidence from genetic material suggests that human-mediated dispersal, between marinas and shellfish culture sites, is the most likely pathway for connectivity of Didemnum vexillum populations throughout Ireland and Britain (Prentice et al., 2021; Holt, 2024). Didemnum vexillum can disperse away from artificial substrata, invading and colonizing natural substrata in surrounding areas (Tillin et al., 2020). Holt (2024) noted that Didemnum vexillum had not spread as far as feared in the UK since it was first recorded. The current evidence of Didemnum vexillum’s ability to spread on natural habitats in this area is sparse and often conflicting, complicated by genetics and its apparent variable habitat preferences and tolerances and its variable ability to adapt to ‘new’ conditions (Holt 2024).

    The seasonal growth cycle of Didemnum vexillum is influenced by temperature (Valentine et al., 2007a). In warmer months (June and July) colonies may be large and well-developed encrusting mats. Populations experience more rapid growth from July to September sometimes continuing into December. Colonies begin to decline in health and ‘die-off’ when temperatures drop below 5°C during winter months from around October to April (Gittenberger, 2007; Valentine et al., 2007a; Herborg et al., 2009). Cold water months cause colonies to regress and reduce in size, yet they often regenerate as temperatures warm (Griffith et al., 2009; Kleeman, 2009, Mercer et al., 2009), although some populations may not survive winter at all (Dijkstra et al., 2007). The early growth phase, from May to July, is initiated by smaller colonies developing from remnants of colonies that survived the cold water (Valentine et al., 2007a). The seasonal growth cycle is also likely influenced by location. For example, the Didemnum sp. growth cycle for colonies in Sandwich tide pool (temperature range from -1 °C to 24 °C, with daily fluctuations), probably does not occur in deep offshore subtidal habitats in Georges Bank (annual temperature range from 4 °C to 15°C, and daily fluctuations are minimal) (Valentine et al., 2007a).  Larval release and recruitment typically occur between 14 to 20°C and slow or cease below 9 to 11°C as summer ends (Griffith et al., 2009; Mckenzie et al., 2017). In New Zealand, recruitment occurs from November to July, where the highest average temperatures were recorded in February (18 to 22°C) and the lowest average temperatures were recorded in July (9 to 10°C) (Fletcher et al., 2013a). In this New Zealand study, higher water temperatures were associated with a higher level of recruitment (Fletcher et al., 2013a).

    Didemnum vexillum requires suitable hard substrata for successful settlement and the establishment of colonies. It can grow quickly and establish large colonies of dense encrusting mats on a variety of hard substrata (Valentine et al., 2007a; Griffith et al., 2009; Lambert, 2009; Groner et al., 2011; Cinar & Ozgul, 2023). Gittenberger (2007) stated that invasive Didemnum sp. was a threat to native ecosystems because of its ability to overgrow virtually all hard substrata present. Suitable hard substrata can include rocky substrata such as bedrock gravel, pebble, cobble, or boulders or artificial substrata such as a variety of maritime structures such as pontoons, docks, wood and metal pilings, chains, ropes and moorings, plastic and ship hulls and at aquaculture facilities (Valentine et al., 2007 a&b; Bullard et al., 2007; Griffith et al., 2009; Lambert, 2009; Tagliapietra et al., 2012; Tillin et al., 2020). Didemnum vexillum has been reported colonizing these types of hard substrata in the USA, Canada, northern Kent, and the Solent (Bullard et al., 2007; Valentine et al., 2007a; Valentine et al., 2007b; Hitchin, 2012; Vercaemer et al., 2015; Tillin et al., 2020).

    Didemnum vexillum has the ability to rapidly overgrow and displace on other sessile organisms such as other colonial ascidians (Ciona intestinalis, Styela clava, Ascidiella aspera, Botrylloides violaceus, Botryllus schlosseri, Diplosoma listerianium and Aplidium spp.), bryozoan, hydroids, sponges (Clione celata and Halichrondria sp.), anemone (Diadumene cincta), calcareous tube worms, eelgrass (Zostera marina), kelp (Laminaria spp. and Agarum sp.), green algae (Codium fragile subsp. fragile), red algae (Plocamium, Chondrus crispus and bush weed Agardhiella subulata), brown algae (Ascophyllum nodosum, Sargassum, Halidrys, Fucus evanescens and Fucus serratus), calcareous algae (Corallina officinalis), mussels (Mytilus galloprovincialis, Perna canaliculus  and Mytilus edulis), barnacles, oysters (Magallana gigas, Ostrea edulis and Crassostrea virginica), sea scallops (Placopecten magellanicus), or dead shells (Dijkstra et al., 2007; Gittenberger, 2007; Valentine et al., 2007a; Valentine et al., 2007b; Griffith et al., 2009; Carman & Grunden, 2010; Dijkstra & Nolan, 2011; Groner et al., 2011; Hitchin, 2012; Tagliapietra et al., 2012; Minchin & Nunn, 2013; Gittenberger et al., 2015; Long & Groholz, 2015; Vercaemer et al., 2015).

    In contrast to Didemnum vexillum’s preference for sheltered conditions, established colonies observed in Georges Bank and Long Island Sound were exposed to moderately strong tidal currents (1 to 2 knots; ca 0.5 to 1 m/s recorded at both sites) that may mobilise sediment (Valentine et al., 2007b; Mercer et al., 2009; Tillin et al., 2020). However, Valentine et al. (2007b) describe the substratum as immobile, presumably consolidated gravel, cobbles and pebbles. Kleeman (2009), stated that the presence of a consistent mild wave action or ‘swash zone’ appears to favour Didemnum sp. establishment in the intertidal. Although some evidence suggests that waves and currents can facilitate the fragmentation and spread of Didemnum vexillum (Mckenzie et al., 2017), the tidal current velocities at some sites where Didemnum vexillum has been reported (for example, New England, where current velocities reach up to around 3 m/s) is lower than the current velocity required for the dislodgement of Didemnum vexillum fragments (around 7.6 m/s) (Reinhardt et al., 2012). This suggests that not all tidal currents are likely to dislodge Didemnum vexillum fragments. When on boat hulls the species can experience higher current velocities which is enough to cause dislodgement (Reinhardt et al., 2012). 

    The Sandwich tide pools (USA) were subject to air exposure at low tide, and daily changes in water depth and temperatures (Valentine et al., 2007a). Didemnum vexillum colonies survived exposure to air at low tides for a short time (not exceeding two hours) during rapid colony growth in the summer months July to September (Valentine et al., 2007a). However, parts of the large established colonies, which were artificially exposed to air for two to three hours in October, were observed desiccated or predated on by grazing periwinkles 30 days later, in the winter month of November (Valentine et al., 2007a). They suggested that the invasive tunicates’ ability to tolerate exposure to air varies with the seasonal growth cycle. Didemnum vexillum also tolerated emersion in Kent, as colonies on the mid-shore at Reculver flourish and survive in air exposure for up to three hours per cycle during springs (Hitchin, 2012). Hitchin (2012) suggested the porous nature of the sandstone boulders the species colonized retained water. The Kent shore was sheltered but held water due to its shallow slope and flats, which may allow Didemnum sp. to survive in the low to mid-shore. There is evidence that Didemnum vexillum died when exposed to air for more than 6 hours (Laing et al., 2010).

    In northern Kent, Didemnum vexillum has been recorded covering London clay boulders on Whitstable Flats, West Beach, north Kent, covering tabulate sandstone boulders (0.5 to 2 m across) on the mid-shore and colonizing sediment mounds on the low shore characterized by larger areas of sand, mud and low-lying sediment at Reculver and Bishopstone, north Kent (Hitchin, 2012). It was also recorded from muddy substrata at that site. Hitchin (2012) noted that the site was exposed to enough waves and currents to cause sedimentation.

    Sensitivity assessment. The above evidence suggests that this biotope could be suitable for the colonization of Magallana gigas due to the presence of gravel and other hard substrata required for successful settlement and establishment (Kochmann, 2012; Kochmann et al., 2013; Mckinstry & Jensen, 2013; Herbert et al., 2016; Tillin et al., 2020). The mid-shore extent of this biotope is not suitable for colonization of the Pacific oyster, which is found predominantly at the Mean Low Water levels to shallow subtidal (Troost, 2010; Herbert et al., 2012, 2016). The Pacific oyster could colonize the lower shore extent or examples of the biotope in higher densities, however, this biotope only occurs in the lower shore in ca 22% of records. Therefore, resistance to colonization by Magallana gigas is assessed as 'Medium' to represent colonization of the lower shore extent of this biotope. Resilience is assessed as 'Very low' as the Magallana gigas population would need to be removed for recovery to occur. Hence, sensitivity is assessed as 'Medium'. The confidence in the assessment is 'Low' because the sensitivity of this biotope to Magallana gigas is potentially site-specific.

    There is no evidence of Didmenum vexillum colonizing this biotope in the UK. Didemnum vexillum requires hard substrata for successful colonization, therefore, it could colonize the cobbles, pebbles and gravel typical of this biotope. Also, Didemnum vexillum has a preference for wave-sheltered conditions typical of this biotope. Didemnum vexillum has been recorded in the lower intertidal but the abundance and extent of colonies may be limited in the mid-shore due to emersion. Didemnum vexillum colonies can survive exposure to air at low tides for a short time (not exceeding two hours) (Valentine et al., 2007a). However, wave splash may mitigate the Didemnum vexillum decline in the mid-shore by providing moisture. Didemnum vexillum has been recorded growing on sandstone boulders in the low to mid-shore in wave-sheltered conditions, as long as there is enough moisture to prevent desiccation. Therefore if Didemnum vexillum was introduced into this biotope it could colonize but be limited to moist areas between the boulders. In addition, Didemnum may not be able to form extensive mats due to the unstable nature of the boulders.  Didemnum vexillum can overgrow and displace sessile organisms, including barnacles. Didemnum vexillum may compete for space with the epifauna present in the biotope. This will potentially interfere with recruitment, which could lead to the mortality of some species and a reduction in biodiversity. Therefore, a resistance of 'Medium' (some mortality, <25%) is suggested as a precaution. Resilience is likely to be 'Very low' as Didemnum vexillum would need to be physically removed to allow recovery. Hence, sensitivity to invasion by Didemnum is assessed as 'Medium'

    Medium
    Low
    NR
    NR
    Help
    Very Low
    High
    High
    High
    Help
    Medium
    Low
    NR
    NR
    Help
    Introduction of microbial pathogens [Show more]

    Introduction of microbial pathogens

    Benchmark. The introduction of relevant microbial pathogens or metazoan disease vectors to an area where they are currently not present (e.g. Martelia refringens and Bonamia, Avian influenza virus, viral Haemorrhagic Septicaemia virus). Further detail

    Evidence

    The characterizing species, littorinids and Semibalanus balanoides are considered to be subject to persistent, low levels of infection by pathogens and parasites. Barnacles are parasitised by a variety of organisms and, in particular, the cryptoniscid isopod Hemioniscus balani, in which heavy infestation can cause castration of the barnacle.  At usual levels of infestation these are not considered to lead to high levels of mortality.  Parasitism by trematodes may cause sterility in Littorina littorea. Littorina littorea are also parasitized by the boring polychaete, Polydora ciliata and Cliona sp, which weakens the shell and increases crab predation (Stefaniak et al., 2005).

    Sensitivity assessment. Based on the characterizing species and the lack of evidence for widespread, high-levels of mortality due to microbial pathogens the biotope is considered to have 'High' resistance to this pressure and therefore 'High' resilience (by default), the biotope is therefore considered to be 'Not sensitive'. 

    Medium
    High
    Low
    Low
    Help
    High
    High
    Low
    Medium
    Help
    Low
    High
    Low
    Low
    Help
    Removal of target species [Show more]

    Removal of target species

    Benchmark. Removal of species targeted by fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

    Evidence

    Littorinids are one of the most commonly harvested species of the rocky shore. Large scale removal of Littorina littorea may allow a proliferation of opportunistic green algae, such as Ulva, on which it preferentially feeds. The community structure within the biotope is likely to be altered but some individuals are likely to remain.

    Experiments designed to test the effects of harvesting by removing individuals at Strangford Lough found that there was no effect of experimental treatments (either harvesting or simulated disturbance) on Littorina littorea abundance or body size over a 12 week period (Crossthwaite et al. 2012). This suggests that these animals are generally abundant and highly mobile; thus, animals that were removed were quickly replaced by dispersal from surrounding, un-harvested areas. However, long-term exploitation, as inferred by background levels of harvest intensity, did significantly influence population abundance and age structure (Crossthwaite et al. 2012). A broadscale study of harvesting in Ireland using field studies and interviews with wholesalers and pickers did suggest that some areas were over harvested but the lack of background data and quantitative records make this assertion difficult to test (Cummins et al., 2002).

    Sensitivity assessment. In general collectors will be efficient at removing this species, resistance is therefore assessed as ‘Low’ (removal is not considered to be total as smaller individuals may escape), recovery is assessed as ‘High’ based on above evidence (Crossthwaite et al., 2012), so that sensitivity is assessed as ‘Low’. This assessment refers to a single collection event, long-term harvesting over wide spatial scales will lead to greater impacts, with lower resistance and longer recovery times. Intense harvesting of littorinids, would be likely to result in enhanced algal growth although the mobility of the boulders and cobbles may counteract the development of all but ephemeral, opportunistic algae.

    Low
    High
    High
    High
    Help
    High
    High
    High
    NR
    Help
    Low
    High
    High
    Low
    Help
    Removal of non-target species [Show more]

    Removal of non-target species

    Benchmark. Removal of features or incidental non-targeted catch (by-catch) through targeted fishery, shellfishery or harvesting at a commercial or recreational scale. Further detail

    Evidence

    Removal of the characterizing littorinids and barnacles would alter the character of the biotope. Removal of these species may result in the proliferation of ephemeral green algae, altering the classification of the biotope to the LR.FLR.Eph.Ulv biotope.

    Sensitivity assessment.  Removal of a large percentage of the characterizing species would alter the character of the biotope, so that it was bare rock. Resistance is therefore assessed as ‘Low’ and recovery as ‘High’, so that sensitivity is assessed as ‘Low’.

    Low
    Low
    NR
    NR
    Help
    High
    High
    High
    High
    Help
    Low
    Low
    Low
    Low
    Help

    Bibliography

    1. Abou-Aisha, K.M., Kobbia, I., El Abyad, M., Shabana, E.F. & Schanz, F., 1995. Impact of phosphorus loadings on macro-algal communities in the Red Sea coast of Egypt. Water, Air, and Soil Pollution, 83 (3-4), 285-297.

    2. Airoldi, L. & Hawkins, S.J., 2007. Negative effects of sediment deposition on grazing activity and survival of the limpet Patella vulgataMarine Ecology Progress Series, 332, 235-240. DOI https://doi.org/10.3354/meps332235

    3. Albrecht, A. & Reise, K., 1994. Effects of Fucus vesiculosus covering intertidal mussel beds in the Wadden Sea. Helgoländer Meeresuntersuchungen, 48 (2-3), 243-256.

    4. Albrecht, A.S., 1998. Soft bottom versus hard rock: Community ecology of macroalgae on intertidal mussel beds in the Wadden Sea. Journal of Experimental Marine Biology and Ecology229 (1), 85-109.

    5. Alfaro, A.C., 2006. Byssal attachment of juvenile mussels, Perna canaliculus, affected by water motion and air bubbles. Aquaculture, 255, 357-61

    6. Almada-Villela, P.C., Davenport, J. & Gruffydd, L.L.D., 1982. The effects of temperature on the shell growth of young Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 59, 275-288.

    7. Alves, M. T., Taylor, N. G. H. & Tidbury, H. J., 2021. Understanding drivers of wild oyster population persistence. Sci Rep, 11 (1), 7837. DOI https://doi.org/10.1038/s41598-021-87418-1

    8. Arnold, D.C., 1957. The response of the limpet, Patella vulgata L., to waters of different salinities. Journal of the Marine Biological Association of the United Kingdom, 36, 121-128.

    9. Ballantine, W., 1961. A biologically-defined exposure scale for the comparative description of rocky shores. Field Studies, 1, 73-84.

    10. Barnes, H., 1956. Balanus balanoides (L.) in the Firth of Clyde: the development and annual variation in the larval population and the causative factors. Journal of Animal Ecology, 25, 72-84.

    11. Barnes, H. & Stone, R., 1972. Suppression of penis development in Balanus balanoides (L.). Journal of Experimental Marine Biology and Ecology, 9 (3), 303-309.

    12. Barnes, H., 1953. The effect of lowered salinity on some barnacle nauplii. Journal of Animal Ecology, 22, 328-330.

    13. Barnes, H., 1957. Processes of restoration and synchronization in marine ecology. The spring diatom increase and the 'spawning' of the common barnacle Balanus balanoides (L.). Année Biologique. Paris, 33, 68-85.

    14. Barnes, H., 1963. Light, temperature and the breeding of Balanus balanoides. Journal of the Marine Biological Association of the United Kingdom, 43 (03), 717-727.

    15. Barnes, H., Finlayson, D.M. & Piatigorsky, J., 1963. The effect of desiccation and anaerobic conditions on the behaviour, survival and general metabolism of three common cirripedes. Journal of Animal Ecology, 32, 233-252.

    16. Barnes, M., 2000. The use of intertidal barnacle shells. Oceanography and Marine Biology: an Annual Review, 38, 157-187.

    17. Bauer, B., Fioroni, P., Ide, I., Liebe, S., Oehlmann, J., Stroben, E. & Watermann, B., 1995. TBT effects on the female genital system of Littorina littorea: a possible indicator of tributyl tin pollution. Hydrobiologia, 309, 15-27.

    18. Baxter, J.M., 1984. The incidence of Polydora ciliata and Cliona celata boring the shell of Patella vulgata in Orkney. Journal of the Marine Biological Association of the United Kingdom, 64, 728-729.

    19. Bayne, B.L., 1976a. The biology of mussel larvae. In Marine mussels: their ecology and physiology (ed. B.L. Bayne), pp. 81-120. Cambridge: Cambridge University Press. [International Biological Programme 10.]

    20. Bennell, S.J., 1981. Some observations on the littoral barnacle populations of North Wales. Marine Environmental Research, 5, 227-240.

    21. Bergmann, M., Wieczorek, S.K., Moore, P.G., 2002. Utilisation of invertebrates discarded from the Nephrops fishery by variously selective benthic scavengers in the west of Scotland. Marine Ecology Progress Series, 233,185-98

    22. Bergström, P., Thorngren, L., Strand, Å & Lindegarth, M., 2021. Identifying high-density areas of oysters using species distribution modeling: Lessons for conservation of the native Ostrea edulis and management of the invasive Magallana (Crassostrea) gigas in Sweden. Ecology and Evolution, 11 (10), 5522-5532. DOI https://doi.org/10.1002/ece3.7451

    23. Berthe, F.C.J., Le Roux, F., Adlard, R.D. & Figueras, A., 2004. Marteiliosis in molluscs: a review. Aquatic Living Resources, 17 (4), 433-448.

    24. Bertness, M.D., 1984. Habitat and community modification by an introduced herbivorous snail. Ecology, 65, 370-381.

    25. Bertness, M.D., Gaines, S. D., Stephens, E. G., & Yund, P. O. , 1992. Components of recruitment in populations of the acorn barnacle Semibalanus balanoides (Linnaeus). Journal of Experimental Marine Biology and Ecology, 156 (2), 199-215.

    26. Bertness, M.D., Gaines, S.D., Bermudez, D. & Sanford, E., 1991. Extreme spatial variation in the growth and reproductive output of the acorn barnacle Semibalanus balanoides. Marine Ecology Progress Series, 75, 91-100.

    27. Bertocci, I., Araujo, R., Vaselli, S. & Sousa-Pinto, I., 2011. Marginal populations under pressure: spatial and temporal heterogeneity of Ascophyllum nodosum and associated assemblages affected by human trampling in Portugal. Marine Ecology Progress Series, 439, 73-82.

    28. Bishop, J. D. D., Wood, C. A., Yunnie, A. L. E. & Griffiths, C. A., 2015. Unheralded arrivals: non-native sessile invertebrates in marinas on the English coast. Aquatic Invasions, 10 (3), 249-264. DOI https://doi.org/10.3391/ai.2015.10.3.01

    29. Bishop, J., 2012c. Carpet Sea-squirt, Didemnum vexillum.Great Britain Non-native Species Secretariat [On-line]. [cited 30/10/2018]. Available from: http://www.nonnativespecies.org/factsheet/factsheet.cfm?speciesId=1209

    30. Bishop, J., 2011a. Botrylloides cf. diegensis. Great Britain Non-native Species Secretariat. [On-line][cited 16/06/2015]. Available from: http://www.nonnativespecies.org

    31. Bishop, J., 2015b. Watersipora subatra. Great Britain Non-native Species Secretariat. [On-line][cited 16/06/2015]. Available from: http://www.nonnativespecies.org

    32. Bishop, J., 2015a. Compass sea squirt, Asterocarpa humilis. Great Britain Non-native Species Secretariat. [On-line] [cited 16/06/2015]. Available from: http://www.nonnativespecies.org

    33. Blackmore, D.T., 1969. Growth, reproduction and zonation of Patella vulgata. Journal of Experimental Marine Biology and Ecology, 3, 200-213.

    34. Bonner, T. M., Pyatt, F. B. & Storey, D. M., 1993. Studies on the motility of the limpet Patella vulgata in acidified sea-water. International Journal of Environmental Studies, 43, 313-320.

    35. Bousfield, E.L., 1973. Shallow-water gammaridean Amphipoda of New England. London: Cornell University Press.

    36. Bower S.M., 2010. Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish [online]. Ontario, Fisheries and Oceans, Canada. Available from: http://dev-public.rhq.pac.dfo-mpo.gc.ca/science/species-especes/shellfish-coquillages/diseases-maladies/index-eng.htm [Accessed: 14/02/2014]

    37. Bower, S.M. & McGladdery, S.E., 1996. Synopsis of Infectious Diseases and Parasites of Commercially Exploited Shellfish. SeaLane Diseases of Shellfish. [on-line]. http://www-sci.pac.dfo-mpo.gc.ca/sealane/aquac/pages/toc.htm, 2000-11-27

    38. Bower, S.M., 1992. Diseases and parasites of mussels. In The mussel Mytilus: ecology, physiology, genetics and culture (ed. E.M. Gosling), pp. 543-563. Amsterdam: Elsevier Science Publ. [Developments in Aquaculture and Fisheries Science, no. 25.]

    39. Bowman, R.S., 1985. The biology of the limpet Patella vulgata L. in the British Isles: spawning time as a factor determining recruitment sucess. In The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc., (ed. P.G. Moore & R. Seed), Hodder and Stoughton, London, pages 178-193.

    40. Bowman, R.S. and Lewis, J.R., 1986. Geographical variation in the breeding cycles and recruitment of Patella spp. Hydrobiologia, 142, 41-56.

    41. Bowman, R.S. & Lewis, J.R., 1977. Annual fluctuations in the recruitment of Patella vulgata L. Journal of the Marine Biological Association of the United Kingdom, 57, 793-815.

    42. Brawley, S.H., 1992b. Mesoherbivores. In Plant-animal interactions in the marine benthos (ed. D.M John, S.J. Hawkins & J.H. Price), pp. 235-263. Oxford: Clarendon Press. [Systematics Association Special Volume, no. 46.]

    43. Brosnan, D.M., 1993. The effect of human trampling on biodiversity of rocky shores: monitoring and management strategies. Recent Advances in Marine Science and Technology, 1992, 333-341.

    44. Brosnan, D.M. & Crumrine, L.L., 1994. Effects of human trampling on marine rocky shore communities. Journal of Experimental Marine Biology and Ecology, 177, 79-97.

    45. Brouardel, J., 1948. Etude du mode d'infestation des Patelles par Urceolaria patellae (Cuenot): influence de l'espece de Patelle. Bulletin du Laboratoire maritime de Dinard, 30, 1-6.

    46. Brousseau, D.J. & Goldberg, R., 2007. Effect of predation by the invasive crab Hemigrapsus sanguineus on recruiting barnacles Semibalanus balanoides in western Long Island Sound, USA. Marine Ecology Progress Series, 339, 221-228.

    47. Brown, P.J. & Taylor, R.B., 1999. Effects of trampling by humans on animals inhabiting coralline algal turf in the rocky intertidal. Journal of Experimental Marine Biology and Ecology, 235, 45-53.

    48. Browne, M.A., Dissanayake, A., Galloway, T.S., Lowe, D.M. & Thompson, R.C., 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environmental Science & Technology, 42 (13), 5026-5031.

    49. Bryan, G.W. & Gibbs, P.E., 1983. Heavy metals from the Fal estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Plymouth: Marine Biological Association of the United Kingdom. [Occasional Publication, no. 2.]

    50. Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.

    51. Bryan, G.W., Langston, W.J., Hummerstone, L.G., Burt, G.R. & Ho, Y.B., 1983. An assessment of the gastropod Littorina littorea (L.) as an indicator of heavy metal contamination in United Kingdom estuaries. Journal of the Marine Biological Association of the United Kingdom, 63, 327-345.

    52. Bullard, S. G., Lambert, G., Carman, M. R., Byrnes, J., Whitlatch, R. B., Ruiz, G., Miller, R. J., Harris, L., Valentine, P. C., Collie, J. S., Pederson, J., McNaught, D. C., Cohen, A. N., Asch, R. G., Dijkstra, J. & Heinonen, K., 2007. The colonial ascidian Didemnum sp. A: Current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. Journal of Experimental Marine Biology and Ecology, 342 (1), 99-108. DOI https://doi.org/10.1016/j.jembe.2006.10.020

    53. Burrows, E.M., 1991. Seaweeds of the British Isles. Volume 2. Chlorophyta. London: British Museum (Natural History).

    54. Buschbaum, C., Buschbaum, G., Schrey, I. & Thieltges, D., 2007. Shell boring polychaetes affect gastropod shell strength and crab predation. Marine Ecology Progress Series, 329, 123-130.

    55. Cabral, S., Carvalho, F., Gaspar, M., Ramajal, J., Sá, E., Santos, C., Silva, G., Sousa, A., Costa, J. L. & Chainho, P., 2020. Non-indigenous species in soft-sediments: Are some estuaries more invaded than others?. Ecological Indicators, 110. DOI https://doi.org/10.1016/j.ecolind.2019.105640

    56. Cabral-Oliveira, J., Mendes, S., Maranhão, P. & Pardal, M., 2014. Effects of sewage pollution on the structure of rocky shore macroinvertebrate assemblages. Hydrobiologia, 726 (1), 271-283.

    57. Carlson, R.L., Shulman, M.J. & Ellis, J.C., 2006. Factors Contributing to Spatial Heterogeneity in the Abundance of the Common Periwinkle Littorina Littorea (L.). Journal of Molluscan Studies, 72 (2), 149-156.

    58. Carman, M.R. & Grunden, D.W., 2010. First occurrence of the invasive tunicate Didemnum vexillum in eelgrass habitat. Aquatic Invasions, 5 (1), 23-29. DOI https://doi.org/10.3391/ai.2010.5.1.4

    59. Carrasco, Mauro F. & Barón, Pedro J., 2010. Analysis of the potential geographic range of the Pacific oyster Crassostrea gigas (Thunberg, 1793) based on surface seawater temperature satellite data and climate charts: the coast of South America as a study case. Biological Invasions, 12 (8), 2597-2607. DOI https://doi.org/10.1007/s10530-009-9668-0

    60. Casey, J.D., De Grave, S. & Burnell, G.M., 1998. Intersex and Littorina littorea in Cork Harbour: results of a medium-term monitoring programme. Hydrobiologia, 378, 193-197.

    61. Chandrasekara, W.U. & Frid, C.L.J., 1998. A laboratory assessment of the survival and vertical movement of two epibenthic gastropod species, Hydrobia ulvae, (Pennant) and Littorina littorea (Linnaeus), after burial in sediment. Journal of Experimental Marine Biology and Ecology, 221, 191-207.

    62. Cinar, M. E. & Ozgul, A., 2023. Clogging nets Didemnum vexillum (Tunicata: Ascidiacea) is in action in the eastern Mediterranean. Journal of the Marine Biological Association of the United Kingdom, 103. DOI https://doi.org/10.1017/s0025315423000802

    63. Cole, S., Codling, I.D., Parr, W. & Zabel, T., 1999. Guidelines for managing water quality impacts within UK European Marine sites. Natura 2000 report prepared for the UK Marine SACs Project. 441 pp., Swindon: Water Research Council on behalf of EN, SNH, CCW, JNCC, SAMS and EHS. [UK Marine SACs Project.]. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/water_quality.pdf

    64. Connell, J.H., 1961. Effects of competition, predation by Thais lapillus, and other factors on natural populations of the barnacle Balanus balanoides. Ecological Monographs, 31, 61-104.

    65. Connor, D.W., Allen, J.H., Golding, N., Howell, K.L., Lieberknecht, L.M., Northen, K.O. & Reker, J.B., 2004. The Marine Habitat Classification for Britain and Ireland. Version 04.05. ISBN 1 861 07561 8. In JNCC (2015), The Marine Habitat Classification for Britain and Ireland Version 15.03. [2019-07-24]. Joint Nature Conservation Committee, Peterborough. Available from https://mhc.jncc.gov.uk/

    66. Connor, D.W., Brazier, D.P., Hill, T.O., & Northen, K.O., 1997b. Marine biotope classification for Britain and Ireland. Vol. 1. Littoral biotopes. Joint Nature Conservation Committee, Peterborough, JNCC Report no. 229, Version 97.06., Joint Nature Conservation Committee, Peterborough, JNCC Report No. 230, Version 97.06.

    67. Coutts, A.D.M. & Forrest, B.M., 2007. Development and application of tools for incursion response: Lessons learned from the management of the fouling pest Didemnum vexillum. Journal of Experimental Marine Biology and Ecology, 342 (1), 154-162. DOI https://doi.org/10.1016/j.jembe.2006.10.042

    68. Crisp, D., 1961. Territorial behaviour in barnacle settlement. Journal of Experimental Biology, 38 (2), 429-446.

    69. Crisp, D. & Patel, B., 1969. Environmental control of the breeding of three boreo-arctic cirripedes. Marine Biology, 2 (3), 283-295.

    70. Crisp, D.J. & Southward, A.J., 1961. Different types of cirral activity Philosophical Transactions of the Royal Society of London, Series B, 243, 271-308.

    71. Crisp, D.J. (ed.), 1964. The effects of the severe winter of 1962-63 on marine life in Britain. Journal of Animal Ecology, 33, 165-210.

    72. Crossthwaite, S.J., Reid, N. & Sigwart, J.D., 2012. Assessing the impact of shore-based shellfish collection on under-boulder communities in Strangford Lough. Report prepared by the Natural Heritage Research Partnership (NHRP) between Quercus, Queen’s University Belfast and the Northern Ireland Environment Agency (NIEA) for the Research and Development Series No. 13/03.

    73. Crothers, J., 1992. Shell size and shape variation in Littorina littorea (L.) from west Somerset.  Proceedings of the Third International Symposium on Littorinid Biology, J. Grahame, PJ Mill and D. G. Reid (eds.). The Malacological Society of London,  pp. 91-97.

    74. Crothers, J.H., 1985. Dog-whelks: an introduction to the biology of Nucella lapillus (L.) Field Studies, 6, 291-360.

    75. Cummins, V., Coughlan, S., McClean, O., Connolly, N., Mercer, J. & Burnell, G., 2002. An assessment of the potential for the sustainable development of the edible periwinkle, Littorina littorea, industry in Ireland.Report by the Coastal and Marine Resources Centre, Environmental Research Institute, University College Cork.

    76. Daly, M.A. & Mathieson, A.C., 1977. The effects of sand movement on intertidal seaweeds and selected invertebrates at Bound Rock, New Hampshire, USA. Marine Biology, 43, 45-55.

    77. Dame, R.F.D., 1996. Ecology of Marine Bivalves: an Ecosystem Approach. New York: CRC Press Inc. [Marine Science Series.]

    78. Dare, P.J., 1976. Settlement, growth and production of the mussel, Mytilus edulis L., in Morecambe Bay, England. Fishery Investigations, Ministry of Agriculture, Fisheries and Food, Series II, 28 , 25pp.

    79. Davenport, J. & Davenport, J.L., 2005. Effects of shore height, wave exposure and geographical distance on thermal niche width of intertidal fauna. Marine Ecology Progress Series, 292, 41-50.

    80. Davenport, J., Berggren, M.S., Brattegard, T., Brattenborg, N., Burrows, M., Jenkins, S., McGrath, D., MacNamara, R., Sneli, J.-A. & Walker, G., 2005. Doses of darkness control latitudinal differences in breeding date in the barnacle Semibalanus balanoides. Journal of the Marine Biological Association of the United Kingdom, 85 (01), 59-63.

    81. Davenport, J., Moore, P.G., Magill, S.H. & Fraser, L.A., 1998. Enhanced condition in dogwhelks, Nucella lapillus (L.) living under mussel hummocks. Journal of Experimental Marine Biology and Ecology, 230, 225-234.

    82. Davies, C.E. & Moss, D., 1998. European Union Nature Information System (EUNIS) Habitat Classification. Report to European Topic Centre on Nature Conservation from the Institute of Terrestrial Ecology, Monks Wood, Cambridgeshire. [Final draft with further revisions to marine habitats.], Brussels: European Environment Agency.

    83. Davies, G., Dare, P.J. & Edwards, D.B., 1980. Fenced enclosures for the protection of seed mussels (Mytilus edulis L.) from predation by shore crabs (Carcinus maenas (L.)) in Morecambe Bay, England. Ministry of Agriculture, Fisheries and Food. Fisheries Technical Report, no. 56.

    84. Davies, M.S., 1992. Heavy metals in seawater: effects on limpet pedal mucus production. Water Research, 26, 1691-1693.

    85. Davies, S.P., 1970. Physiological ecology of Patella IV. Environmental and limpet body temperatures. Journal of the Marine Biological Association of the United Kingdom, 50 (04), 1069-1077.

    86. De Vooys, C.G.N., 1987. Elimination of sand in the blue mussel Mytilus edulis. Netherlands Journal of Sea Research, 21, 75-78.

    87. Deutsch, U. & Fioroni, P., 1996. Effects of tributyltin (TBT) and testosterone on the female genital system in the mesogastropod Littorina littorea (Prosobranchia). Helgolander Meeresuntersuchungen, 50, 105-115.

    88. Diaz, E.R., Kraufvelin, P. & Erlandsson, J., 2012. Combining gut fluorescence technique and spatial analysis to determine Littorina littorea grazing dynamics in nutrient-enriched and nutrient-unenriched littoral mesocosms. Marine Biology, 159 (4), 837-852.

    89. Diaz, R.J. & Rosenberg, R., 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology: an Annual Review, 33, 245-303.

    90. Diederich, S., 2006. High survival and growth rates of introduced Pacific oysters may cause restrictions on habitat use by native mussels in the Wadden Sea. Journal of Experimental Marine Biology and Ecology, 328 (2), 211-227.

    91. Dijkstra, J. A. & Nolan, R., 2011. Potential of the invasive colonial ascidian, Didemnum vexillum, to limit escape response of the sea scallop, Placopecten magellanicus. Aquatic Invasions, 6 (4), 451-456. DOI https://doi.org/10.3391/ai.2011.6.4.10

    92. Dijkstra, J., Harris, L.G. & Westerman, E., 2007. Distribution and long-term temporal patterns of four invasive colonial ascidians in the Gulf of Maine. Journal of Experimental Marine Biology and Ecology, 342 (1), 61-68. DOI https://doi.org/10.1016/j.jembe.2006.10.015

    93. Dixon, P.S. & Irvine, L.M., 1977. Seaweeds of the British Isles. Volume 1 Rhodophyta. Part 1 Introduction, Nemaliales, Gigartinales. London: British Museum (Natural History) London.

    94. Doherty, S.D., Brophy, D. & Gosling, E., 2009. Synchronous reproduction may facilitate introgression in a hybrid mussel (Mytilus) population. Journal of Experimental Marine Biology and Ecology, 378, 1-7.

    95. Ekaratne, S.U.K. & Crisp, D.J., 1984. Seasonal growth studies of intertidal gastropods from shell micro-growth band measurements, including a comparison with alternative methods. Journal of the Marine Biological Association of the United Kingdom, 64, 183-210.

    96. Eno, N.C., Clark, R.A. & Sanderson, W.G. (ed.) 1997. Non-native marine species in British waters: a review and directory. Peterborough: Joint Nature Conservation Committee.

    97. Erlandsson, J. & Johannesson, K., 1992. Sexual selection on female size in a marine snail, Littorina littorea. Journal of Experimental Marine Biology and Ecology, 181, 145-157.

    98. Eschweiler, N. & Buschbaum, C., 2011. Alien epibiont (Crassostrea gigas) impacts on native periwinkles (Littorina littorea). Aquatic Invasions, 6 (3), 281-290.

    99. Essink, K., 1999. Ecological effects of dumping of dredged sediments; options for management. Journal of Coastal Conservation, 5, 69-80.

    100. Evans, R.G., 1948. The lethal temperatures of some common British littoral molluscs. The Journal of Animal Ecology, 17, 165-173.

    101. Ezgeta-Balic, D., Segvic-Bubic, T., Staglicic, N., Lin, Y. P., Bojanic Varezic, D., Grubisic, L. & Briski, E., 2019. Distribution of non-native Pacific oyster Magallana gigas (Thunberg, 1793) along the eastern Adriatic coast. Acta Adriatica, 60 (2), 137-146. DOI https://doi.org/10.32582/aa.60.2.3

    102. Feare, C.J., 1970b. Aspects of the ecology of an exposed shore population of dogwhelks Nucella lapillus. Oecologia, 5, 1-18.

    103. Fish, J. D., 1972. The breeding cycle and growth of open coast and estuarine populations of Littorina littorea. Journal of the Marine Biological Association of the United Kingdom, 52, 1011-1019.

    104. Fletcher, H. & Frid, C.L.J., 1996a. Impact and management of visitor pressure on rocky intertidal algal communities. Aquatic Conservation: Marine and Freshwater Ecosystems, 6, 287-297.

    105. Fletcher, L. M., Forrest, B. M., Atalah, J. & Bell, J. J., 2013a. Reproductive seasonality of the invasive ascidian Didemnum vexillum in New Zealand and implications for shellfish aquaculture. Aquaculture Environment Interactions, 3 (3), 197-211. DOI https://doi.org/10.3354/aei00063

    106. Foster, B.A., 1970. Responses and acclimation to salinity in the adults of some balanomorph barnacles. Philosophical Transactions of the Royal Society of London, Series B, 256, 377-400.

    107. Foster, B.A., 1971b. On the determinants of the upper limit of intertidal distribution of barnacles. Journal of Animal Ecology, 40, 33-48.

    108. Foster, P., Hunt, D.T.E. & Morris, A.W., 1978. Metals in an acid mine stream and estuary. Science of the Total Environment, 9, 75-86.

    109. Frechette, M., Butman, C.A., Geyer, W.R., 1989. The importance of boundary-layer flow in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnology and Oceanography, 34, 19-36.

    110. Fretter, V. & Graham, A., 1994. British prosobranch molluscs: their functional anatomy and ecology, revised and updated edition. London: The Ray Society.

    111. Gallagher, M.C., Davenport, J., Gregory, S., McAllen, R. & O'Riordan, R., 2015. The invasive barnacle species, Austrominius modestus: Its status and competition with indigenous barnacles on the Isle of Cumbrae, Scotland. Estuarine, Coastal and Shelf Science, 152, 134-141.

    112. GBNNSS, 2011. Risk assessment for Crassostrea gigas. GB Non-native Species Information Portal, GB Non-native Species Secretariat. Available from: https://www.nonnativespecies.org/assets/Uploads/RA_Crassostrea_gigas_finalpoc.pdf

    113. GBNNSS, 2012. Pacific oyster Magallana gigas. Factsheet. GB Non-native Species Information Portal, [online] GB Non-native Species Secretariat. [Accessed July 2024]. Available from: https://www.nonnativespecies.org/non-native-species/information-portal/view/1013

    114. Gibbs, P.E., Green, J.C. & Pascoe, P.C., 1999. A massive summer kill of the dog-whelk, Nucella lapillus, on the north Cornwall coast in 1995: freak or forerunner? Journal of the Marine Biological Association of the United Kingdom, 79, 103-109.

    115. Gittenberger, A, Rensing, M, Dekker, R, Niemantsverdriet, P, Schrieken, N & Stegenga, H, 2015. Native and non-native species of the Dutch Wadden Sea in 2014. Issued by Office for Risk Assessment and Research, The Netherlands Food and Consumer Product Safety Authority.

    116. Gittenberger, A., 2007. Recent population expansions of non-native ascidians in The Netherlands. Journal of Experimental Marine Biology and Ecology, 342 (1), 122-126. DOI https://doi.org/10.1016/j.jembe.2006.10.022

    117. Gomes-Filho, J., Hawkins, S., Aquino-Souza, R. & Thompson, R., 2010. Distribution of barnacles and dominance of the introduced species Elminius modestus along two estuaries in South-West England. Marine Biodiversity Records, 3, e58.

    118. Gosling, E.M. (ed.), 1992a. The mussel Mytilus: ecology, physiology, genetics and culture. Amsterdam: Elsevier Science Publ. [Developments in Aquaculture and Fisheries Science, no. 25]

    119. Gray, J.S., Wu R.S.-S. & Or Y.Y., 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series, 238, 249-279. DOI https://doi.org/10.3354/meps238249

    120. Green, D.S. & Crowe, T.P., 2013. Physical and biological effects of introduced oysters on biodiversity in an intertidal boulder field. Marine Ecology Progress Series, 482, 119-132. DOI https://doi.org/10.3354/meps10241

    121. Green, Dannielle S. & Crowe, Tasman P., 2014. Context- and density-dependent effects of introduced oysters on biodiversity. Biological Invasions, 16 (5), 1145-1163. DOI https://doi.org/10.1007/s10530-013-0569-x

    122. Grenon, J.F. & Walker, G., 1981. The tenacity of the limpet, Patella vulgata L.: an experimental approach. Journal of Experimental Marine Biology and Ecology, 54, 277-308.

    123. Griffith, K., Mowat, S., Holt, R.H., Ramsay, K., Bishop, J.D., Lambert, G. & Jenkins, S.R., 2009. First records in Great Britain of the invasive colonial ascidian Didemnum vexillum Kott, 2002. Aquatic Invasions, 4 (4), 581-590. DOI https://doi.org/10.3391/ai.2009.4.4.3

    124. Groenewold, S. & Fonds, M., 2000. Effects on benthic scavengers of discards and damaged benthos produced by the beam-trawl fishery in the southern North Sea. ICES Journal of Marine Science, 57 (5), 1395-1406.

    125. Groner, F., Lenz, M., Wahl, M. & Jenkins, S.R., 2011. Stress resistance in two colonial ascidians from the Irish Sea: The recent invader Didemnum vexillum is more tolerant to low salinity than the cosmopolitan Diplosoma listerianum. Journal of Experimental Marine Biology and Ecology, 409 (1), 48-52. DOI https://doi.org/10.1016/j.jembe.2011.08.002

    126. Gyory, J. & Pineda, J., 2011. High-frequency observations of early-stage larval abundance: do storms trigger synchronous larval release in Semibalanus balanoides? Marine Biology, 158 (7), 1581-1589.

    127. Gyory, J., Pineda, J. & Solow, A., 2013. Turbidity triggers larval release by the intertidal barnacle Semibalanus balanoides. Marine Ecology Progress Series, 476, 141-151.

    128. Hansen, B.W., Dolmer, P. & Vismann, B., 2023. Too late for regulatory management on Pacific oysters in European coastal waters? Journal of Sea Research, 191. DOI https://doi.org/10.1016/j.seares.2022.102331

    129. Hartnoll, R.G. & Hawkins, S.J., 1985. Patchiness and fluctuations on moderately exposed rocky shores. Ophelia, 24, 53-63.

    130. Hawkins, A., Smith, R., Bayne, B. & Heral, M., 1996. Novel observations underlying the fast growth of suspension-feeding shellfish in turbid environments: Mytilus edulis. Marine Ecology Progress Series, 131, 179-90

    131. Hawkins, S., 1983. Interactions of Patella and macroalgae with settling Semibalanus balanoides (L.). Journal of Experimental Marine Biology and Ecology, 71 (1), 55-72.

    132. Hawkins, S.J. & Harkin, E., 1985. Preliminary canopy removal experiments in algal dominated communities low on the shore and in the shallow subtidal on the Isle of Man. Botanica Marina, 28, 223-30.

    133. Hawkins, S.J. & Hartnoll, R.G., 1983. Grazing of intertidal algae by marine invertebrates. Oceanography and Marine Biology: an Annual Review, 21, 195-282.

    134. Hawkins, S.J. & Hartnoll, R.G., 1985. Factors determining the upper limits of intertidal canopy-forming algae. Marine Ecology Progress Series, 20, 265-271.

    135. Hawkins, S.J. & Southward, A.J., 1992. The Torrey Canyon oil spill: recovery of rocky shore communities. In Restoring the Nations Marine Environment, (ed. G.W. Thorpe), Chapter 13, pp. 583-631. Maryland, USA: Maryland Sea Grant College.

    136. Hawkins, S.J., 1981. The influence of Patella grazing on the fucoid/barnacle mosaic on moderately exposed rocky shores. Kieler Meeresforschungen, 5, 537-543.

    137. Hawkins, S.J., Hartnoll, R.G., Kain, J.M. & Norton, T.A., 1992. Plant-animal interactions on hard substrata in the north-east Atlantic. In Plant-animal interactions in the marine benthos (ed. D.M. John, S.J. Hawkins & J.H. Price), pp. 1-32. Oxford: Clarendon Press. [Systematics Association Special Volume, no. 46.]

    138. Hawkins, S.J., Proud, S.V., Spence, S.K. & Southward, A.J., 1994. From the individual to the community and beyond: water quality, stress indicators and key species in coastal systems. In Water quality and stress indicators in marine and freshwater ecosystems: linking levels of organisation (individuals, populations, communities) (ed. D.W. Sutcliffe), 35-62. Ambleside, UK: Freshwater Biological Association.

    139. Hawkins, S.J., Southward, A.J. & Barrett, R.L., 1983. Population structure of Patella vulgata (L.) during succession on rocky shores in southwest England. Oceanologica Acta, Special Volume, 103-107.

    140. Herbert, R.J.H., Humphreys, J., Davies, C.J., Roberts, C., Fletcher, S. & Crowe, T.P., 2016. Ecological impacts of non-native Pacific oysters (Crassostrea gigas) and management measures for protected areas in Europe. Biodiversity and Conservation, 25 (14), 2835-2865. DOI https://doi.org/10.1007/s10531-016-1209-4

    141. Herbert, R.J.H., Roberts, C., Humphreys, J., & Fletcher, S. 2012. The Pacific oyster (Crassostra gigas) in the UK: economic, legal and environmental issues associated with its cultivation, wild establishment and exploitation. Available from: https://www.daera-ni.gov.uk/publications/pacific-oyster-uk-issues-associated-its-cultivation-wild-establishment-and-exploitation

    142. Herborg, L.M., O’Hara, P. & Therriault, T.W., 2009. Forecasting the potential distribution of the invasive tunicate Didemnum vexillum. Journal of Applied Ecology, 46 (1), 64-72. DOI https://doi.org/10.1111/j.1365-2664.2008.01568.x

    143. Highsmith, R.C., Rucker, T.L., Stekoll, M.S., Saupe, S.M., Lindeberg, M.R., Jenne, R.N. & Erickson, W.P., 1996. Impact of the Exxon Valdez oil spill on intertidal biota. In Proceedings of the Exxon Valdez Oil Spill Symposium. American Fisheries Society Symposium, no. 18, Anchorage, Alaska, USA, 2-5 February 1993, (ed. S.D. Rice, R.B. Spies, D.A., Wolfe & B.A. Wright), pp.212-237.

    144. Hill, S., Burrows, S.J. & Hawkins, S.J., 1998. Intertidal Reef Biotopes (Volume VI). An overview of dynamics and sensitivity characteristics for conservation management of marine Special Areas of Conservation. Oban: Scottish Association for Marine Science (UK Marine SACs Project)., Scottish Association for Marine Science (UK Marine SACs Project). Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/reefbiot.pdf

    145. Hills, J. & Thomason, J., 1998. The effect of scales of surface roughness on the settlement of barnacle (Semibalanus balanoides) cyprids. Biofouling, 12 (1-3), 57-69.

    146. Hily, C., Potin, P. & Floch, J.Y. 1992. Structure of subtidal algal assemblages on soft-bottom sediments - fauna flora interactions and role of disturbances in the Bay of Brest, France. Marine Ecology Progress Series, 85, 115-130.

    147. Hitchin, B., 2012. New outbreak of Didemnum vexillum in North Kent: on stranger shores. Porcupine Marine Natural History Society Newsletter, 31, 43-48.

    148. Hoare, R. & Hiscock, K., 1974. An ecological survey of the rocky coast adjacent to the effluent of a bromine extraction plant. Estuarine and Coastal Marine Science, 2 (4), 329-348.

    149. Holmes, S.P., Walker, G. & van der Meer, J., 2005. Barnacles, limpets and periwinkles: the effects of direct and indirect interactions on cyprid settlement and success. Journal of Sea Research, 53 (3), 181-204.

    150. Holt, R., 2024. GB Non-native organism risk assessment for Didemnum vexillum. GB Non-native Species Information Portal, GB Non-native Species Secretariat.

    151. Holt, T.J., Hartnoll, R.G. & Hawkins, S.J., 1997. The sensitivity and vulnerability to man-induced change of selected communities: intertidal brown algal shrubs, Zostera beds and Sabellaria spinulosa reefs. English Nature, Peterborough, English Nature Research Report No. 234.

    152. Holt, T.J., Jones, D.R., Hawkins, S.J. & Hartnoll, R.G., 1995. The sensitivity of marine communities to man induced change - a scoping report. Countryside Council for Wales, Bangor, Contract Science Report, no. 65.

    153. Holt, T.J., Rees, E.I., Hawkins, S.J. & Seed, R., 1998. Biogenic reefs (Volume IX). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project), 174 pp. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/biogreef.pdf

    154. Hong, J. & Reish, D.J., 1987. Acute toxicity of cadmium to eight species of marine amphipod and isopod crustaceans from southern California. Bulletin of Environmental Contamination and Toxicology, 39, 884-888.

    155. Houghton, J.P., Lees, D.C., Driskell, W.B., Lindstrom & Mearns, A.J., 1996. Recovery of Prince William Sound intertidal epibiota from Exxon Valdez oiling and shoreline treatments, 1989 through 1992. In Proceedings of the Exxon Valdez Oil Spill Symposium. American Fisheries Society Symposium, no. 18, Anchorage, Alaska, USA, 2-5 February 1993, (ed. S.D. Rice, R.B. Spies, D.A., Wolfe & B.A. Wright), pp.379-411.

    156. Janke, K., 1990. Biological interactions are their role in the community structure in the rocky intertidal of Helgoland (German Bight, North Sea) Helgolander Wissenschaftliche Meeresuntersuchungen, 44, 219-263.

    157. Jenkins, S., Åberg, P., Cervin, G., Coleman, R., Delany, J., Della Santina, P., Hawkins, S., LaCroix, E., Myers, A. & Lindegarth, M., 2000. Spatial and temporal variation in settlement and recruitment of the intertidal barnacle Semibalanus balanoides (L.)(Crustacea: Cirripedia) over a European scale. Journal of Experimental Marine Biology and Ecology, 243 (2), 209-225.

    158. Jenkins, S., Aberg, P., Cervin, G., Coleman, R., Delany, J., Hawkins, S., Hyder, K., Myers, A., Paula, J. & Power, A., 2001b. Population dynamics of the intertidal barnacle Semibalanus balanoides at three European locations: spatial scales of variability. Marine Ecology Progress Series, 217, 207-217.

    159. Jenkins, S.R., Norton, T.A. & Hawkins, S.J., 1999. Settlement and post-settlement interactions between Semibalanus balanoides (L.)(Crustacea: Cirripedia) and three species of fucoid canopy algae. Journal of Experimental Marine Biology and Ecology, 236 (1), 49-67.

    160. JNCC (Joint Nature Conservation Committee), 2022.  The Marine Habitat Classification for Britain and Ireland Version 22.04. [Date accessed]. Available from: https://mhc.jncc.gov.uk/

    161. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

    162. Jørgensen, C.B., 1981. Mortality, growth, and grazing impact on a cohort of bivalve larvae, Mytilus edulis L. Ophelia, 20, 185-192.

    163. Jørgensen, T., 1990. Long-term changes in age at sexual maturity of Northeast Arctic cod (Gadus morhua L.). ICES Journal du Conseil, 46, 235-248.

    164. Kaiser, M.J. & Spencer, B.E., 1994. Fish scavenging behaviour in recently trawled areas. Marine Ecology Progress Series, 112 (1-2), 41-49.

    165. Kautsky, N., 1981. On the trophic role of the blue mussel (Mytilus edulis L.) in a Baltic coastal ecosystem and the fate of the organic matter produced by the mussels. Kieler Meeresforschungen Sonderheft, 5, 454-461.

    166. Kelly, J.R. & Volpe, J.P., 2007. Native eelgrass (Zostera marina L.) survival and growth adjacent to non-native oysters (Crassostrea gigas Thunberg) in the Strait of Georgia, British Columbia. Botanica Marina, 50 (3), 143-150. DOI https://doi.org/10.1515/BOT.2007.017

    167. Kendall, M.A., Bowman, R.S., Williamson, P. & Lewis, J.R., 1985. Annual variation in the recruitment of Semibalanus balanoides on the North Yorkshire coast 1969-1981. Journal of the Marine Biological Association of the United Kingdom, 65, 1009-1030.

    168. Kinne, O. (ed.), 1980. Diseases of marine animals. vol. 1. General aspects. Protozoa to Gastropoda. Chichester: John Wiley & Sons.

    169. Kittner, C. & Riisgaard, H.U., 2005. Effect of temperature on filtration rate in the mussel Mytilus edulis: no evidence for temperature compensation. Marine Ecology Progress Series 305: 147-52

    170. Kochmann, J, 2012. Into the Wild Documenting and Predicting the Spread of Pacific Oysters (Crassostrea gigas) in Ireland. PhD Thesis, University College Dublin. Available from: https://www.tcd.ie/research/simbiosys/images/JKPhD.pdf

    171. Kochmann, J., Buschbaum, C., Volkenborn, N. & Reise, K., 2008. Shift from native mussels to alien oysters: differential effects of ecosystem engineers. Journal of Experimental Marine Biology and Ecology, 364 (1), 1-10. DOI https://doi.org/10013/epic.31007.d001

    172. Kochmann, J., O’Beirn, F., Yearsley, J. & Crowe, T.P., 2013. Environmental factors associated with invasion: modelling occurrence data from a coordinated sampling programme for Pacific oysters. Biological Invasions, 15 (10), 2265-2279. DOI https://doi.org/10.1007/s10530-013-0452-9

    173. Laing, I., Bussell, J. & Somerwill, K., 2010. Project report: Assessment of the impacts of Didemnum vexillum and options for the management of the species in England. CEFAS. 62 pp.

    174. Lambert, G., 2009. Adventures of a sea squirt sleuth: unraveling the identity of Didemnum vexillum, a global ascidian invader. Aquatic Invaders, 4(1), 5-28. DOI https://doi.org/10.3391/ai.2009.4.1.2

    175. Landes, A. & Zimmer, M., 2012. Acidification and warming affect both a calcifying predator and prey, but not their interaction. Marine Ecology Progress Series, 450, 1-10.

    176. Landsberg, J.H., 1996. Neoplasia and biotoxins in bivalves: is there a connection? Journal of Shellfish Research, 15, 203-230.

    177. Langston, W.J. & Zhou Mingjiang, 1986. Evaluation of the significance of metal-binding proteins in the gastropod Littorina littorea. Marine Biology, 92, 505-515.

    178. Lejart, M. & Hily, C., 2011. Differential response of benthic macrofauna to the formation of novel oyster reefs (Crassostrea gigas, Thunberg) on soft and rocky substrate in the intertidal of the Bay of Brest, France. Journal of Sea Research, 65 (1), 84-93. DOI https://doi.org/10.1016/j.seares.2010.07.004

    179. Lengyel, N.L., Collie, J.S. & Valentine, P.C., 2009. The invasive colonial ascidian Didemnum vexillum on Georges Bank - Ecological effects and genetic identification. Aquatic Invasions, 4(1), 143-152. DOI https://doi.org/10.3391/ai.2009.4.1.15

    180. Leonard, G.H., Levine, J.M., Schmidt, P.R. & Bertness, M.D., 1998. Flow-driven variation in intertidal community structure in a Maine estuary. Ecology, 79 (4), 1395-1411.

    181. Le Quesne W.J.F. 2005. The response of a protandrous species to exploitation, and the implications for management: a case study with patellid limpets. PhD thesis. University of Southampton, Southampton, United Kingdom.

    182. Lewis, J. & Bowman, R.S., 1975. Local habitat-induced variations in the population dynamics of Patella vulgata L. Journal of Experimental Marine Biology and Ecology, 17 (2), 165-203.

    183. Lewis, J.R., 1964. The Ecology of Rocky Shores. London: English Universities Press.

    184. Little, C. & Kitching, J.A., 1996. The Biology of Rocky Shores. Oxford: Oxford University Press.

    185. Little, C., Partridge, J.C. & Teagle, L., 1991. Foraging activity of limpets in normal and abnormal tidal regimes. Journal of the Marine Biological Association of the United Kingdom, 71, 537-554.

    186. Littler, M.M., Martz, D.R. & Littler, D.S., 1983. Effects of recurrent sand deposition on rocky intertidal organisms: importance of substrate heterogeneity in a fluctuating environment. Marine Ecology Progress Series. 11 (2), 129-139.

    187. Livingstone, D.R. & Pipe, R.K., 1992. Mussels and environmental contaminants: molecular and cellular aspects. In The mussel Mytilus: ecology, physiology, genetics and culture, (ed. E.M. Gosling), pp. 425-464. Amsterdam: Elsevier Science Publ. [Developments in Aquaculture and Fisheries Science, no. 25]

    188. Long, H. A. & Grosholz, E. D., 2015. Overgrowth of eelgrass by the invasive colonial tunicate Didemnum vexillum: Consequences for tunicate and eelgrass growth and epifauna abundance. Journal of Experimental Marine Biology and Ecology, 473, 188-194. DOI https://doi.org/10.1016/j.jembe.2015.08.014

    189. Long, J.D., Cochrane, E. & Dolecal, R., 2011. Previous disturbance enhances the negative effects of trampling on barnacles. Marine Ecology Progress Series, 437, 165-173.

    190. Loo, L-O., 1992. Filtration, assimilation, respiration and growth of Mytilus edulis L. at low temperatures. Ophelia 35: 123-31

    191. Loosanoff, V.L., 1962. Effects of turbidity on some larval and adult bivalves.  Proceedings of the Gulf and Caribbean Fisheries Institute14, 80-95.

    192. Lubchenco, J., 1983. Littornia and Fucus: effects of herbivores, substratum heterogeneity, and plant escapes during succession. Ecology, 64 (5), 1116-1123.

    193. Lubchenco, J., 1978. Plant species diversity in a marine intertidal community, importance of herbivore food preference and algal competitive abilities. American Naturalist, 112, 23-39.

    194. Maggs, C.A. & Hommersand, M.H., 1993. Seaweeds of the British Isles: Volume 1 Rhodophycota Part 3A Ceramiales. London: Natural History Museum, Her Majesty's Stationary Office.

    195. Marchan, S., Davies, M.S., Fleming, S. & Jones, H.D., 1999. Effects of copper and zinc on the heart rate of the limpet Patella vulgata (L.) Comparative Biochemistry and Physiology, 123A, 89-93.

    196. Markert, A., Wehrmann, A. & Kröncke, I., 2010. Recently established Crassostrea-reefs versus native Mytilus-beds: differences in ecosystem engineering affects the macrofaunal communities (Wadden Sea of Lower Saxony, southern German Bight). Biological Invasions, 12 (1), 15-32. DOI https://doi.org/10.1007/s10530-009-9425-4

    197. Marshall, D.J. & McQuaid, C.D., 1989. The influence of respiratory responses on the tolerance to sand inundation of the limpets Patella granularis L.(Prosobranchia) and Siphonaria capensis Q. et G.(Pulmonata). Journal of Experimental Marine Biology and Ecology, 128 (3), 191-201.

    198. Marshall, D.J. & McQuaid, C.D., 1993. Effects of hypoxia and hyposalinity on the heart beat of the intertidal limpets Patella granvlaris (Prosobranchia) and Siphonaria capensis (Pulmonata). Comparative Biochemistry and Physiology Part A: Physiology, 106 (1), 65-68

    199. McGrorty, S., Clarke, R.T., Reading, C.J. & Goss, C.J.D., 1990. Population dynamics of the mussel Mytilus edulis: density changes and regulation of the population in the Exe Estuary, Devon. Marine Ecology Progress Series, 67, 157-169.

    200. McKay, D.W., 1994. Aulacomya ater (Mollina, 1782) [Mollusca: Pelecypoda] collected from the Moray Firth. Porcupine Newsletter, 5, 23.

    201. McKenzie, C.H, Reid, V., Lambert, G., Matheson, K., Minchin, D., Pederson, J., Brown, L., Curd, A., Gollasch, S., Goulletquer, P, Occphipinti-Ambrogi, A., Simard, N. & Therriault, T.W., 2017. Alien species alert: Didemnum vexillum Kott, 2002: Invasion, impact, and control. ICES Cooperative Research Reports (CRR), 33 pp. DOI http://doi.org/10.17895/ices.pub.2138

    202. McKinstry K. & Jensen A., 2013. Distribution, abundance and temporal variation of the Pacific oyster, Crassostrea gigas in Poole Harbour. Available from: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/313003/fcf-oyster.pdf

    203. McLusky, D.S., Bryant, V. & Campbell, R., 1986. The effects of temperature and salinity on the toxicity of heavy metals to marine and estuarine invertebrates. Oceanography and Marine Biology: an Annual Review, 24, 481-520.

    204. Mercer, J.M, Whitlatch, R.B, & Osman, R.W. 2009. Potential effects of the invasive colonial ascidian (Didemnum vexillum Kott, 2002) on pebble-cobble bottom habitats in Long Island Sound, USA. Aquatic Invasions, 4, 133-142. DOI https://doi.org/10.3391/ai.2009.4.1.14

    205. Mieszkowska, N., Burrows, M.T., Pannacciulli, F.G. & Hawkins, S.J., 2014. Multidecadal signals within co-occurring intertidal barnacles Semibalanus balanoides and Chthamalus spp. linked to the Atlantic Multidecadal Oscillation. Journal of Marine Systems, 133, 70-76.

    206. Minchin, D.M & Nunn, J.D., 2013. Rapid assessment of marinas for invasive alien species in Northern Ireland. Northern Ireland Environment Agency Research and Development Series, Northern Ireland Environment Agency.

    207. Monterosso, B., 1930. Studi cirripedologici. VI. Sul comportamento di Chthamalus stellatus in diverse condizioni sperimentali. Atti Accad. Naz. Lincei Rc., 9, 501-504.

    208. Moore, P.G., 1977a. Inorganic particulate suspensions in the sea and their effects on marine animals. Oceanography and Marine Biology: An Annual Review, 15, 225-363.

    209. Morgan, A., Slater, M., Mortimer, N., McNie, F., Singfield, C., Bailey, L., Covey, R., McNair, S., Waddell, C., Crundwell, R., Gall, A., Selley, H. & Packer, N., 2021. Partnership led strategy to monitor and manage spread of Pacific oyster populations in south Devon and Cornwall. Natural England Research Reports, NERR100. Natural England Research Reports, NERR100, Natural England, Truro, Cornwall, 258 pp. Available from: https://publications.naturalengland.org.uk/publication/4889256448491520#:~:text=Between 2017 and 2020, volunteers,method of controlling population expansion.

    210. Mouritsen, K. N., Gorbusin, A. & Jensen, K. T., 1999. Influence of trematode infections on in situ growth rates of Littorina littorea. Journal of the Marine Biological Association of the United Kingdom, 79, 425-430.

    211. Mrowicki, R.J., Maggs, C.A. & O'Connor, N.E., 2014. Does wave exposure determine the interactive effects of losing key grazers and ecosystem engineers? Journal of Experimental Marine Biology and Ecology, 461 (0), 416-424.

    212. Myrand, B., Guderley, H. & Himmelman, J.H., 2000. Reproduction and summer mortality of blue mussels Mytilus edulis in the Magdalen Islands, southern Gulf of St. Lawrence. Marine Ecology Progress Series 197: 193-207

    213. NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

    214. Newell, R.C., 1979. Biology of intertidal animals. Faversham: Marine Ecological Surveys Ltd.

    215. Norton, T.A., 1992. Dispersal by macroalgae. British Phycological Journal, 27, 293-301.

    216. O'Brien, P.J. & Dixon, P.S., 1976. Effects of oils and oil components on algae: a review. British Phycological Journal, 11, 115-142.

    217. OBIS (Ocean Biodiversity Information System),  2024. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2024-12-26

    218. Oehlmann, J., Bauer, B., Minchin, D., Schulte-Oehlmann, U., Fioroni, P. & Markert, B., 1998. Imposex in Nucella lapillus and intersex in Littorina littorea: interspecific comparison of two TBT- induced effects and their geographical uniformity. Hydrobiologia, 378, 199-213

    219. Padilla, D.K., 2010. Context-dependent impacts of a non-native ecosystem engineer, the Pacific Oyster Crassostrea gigas. Integrative and Comparative Biology, 50 (2), 213-225. DOI https://doi.org/10.1093/icb/icq080

    220. Petpiroon, S. & Dicks, B., 1982. Environmental effects (1969 to 1981) of a refinery effluent discharged into Littlewick Bay, Milford Haven. Field Studies, 5, 623-641.

    221. Petraitis, P.S. & Dudgeon, S.R., 2005. Divergent succession and implications for alternative states on rocky intertidal shores. Journal of Experimental Marine Biology and Ecology, 326 (1), 14-26. DOI https://doi.org/10.1016/j.jembe.2005.05.013

    222. Petraitis, P.S., Rhile, E.C. & Dudgeon, S., 2003. Survivorship of juvenile barnacles and mussels: spatial dependence and the origin of alternative communities. Journal of Experimental Marine Biology and Ecology, 293 (2), 217-236.

    223. Pieters, H., Klutymans, J.H., Zandee, D.I. & Cadee, G.C., 1980. Tissue composition and reproduction of Mytilus edulis dependent upon food availability. Netherlands Journal of Sea Research, 14, 349-361.

    224. Povey, A. & Keough, M.J., 1991. Effects of trampling on plant and animal populations on rocky shores. Oikos61: 355-368.

    225. Prendergast, G.S., Zurn, C.M., Bers, A.V., Head, R.M., Hansson, L.J. & Thomason, J.C., 2009. The relative magnitude of the effects of biological and physical settlement cues for cypris larvae of the acorn barnacle, Semibalanus balanoides L. Biofouling, 25 (1), 35-44.

    226. Prentice, M. B., Vye, S. R., Jenkins, S. R., Shaw, P. W. & Ironside, J. E., 2021. Genetic diversity and relatedness in aquaculture and marina populations of the invasive tunicate Didemnum vexillum in the British Isles. Biological Invasions, 23 (12), 3613-3624. DOI https://doi.org/10.1007/s10530-021-02615-3

    227. Purchon, R.D., 1937. Studies on the biology of the Bristol Channel. Proceedings of the Bristol Naturalists' Society, 8, 311-329.

    228. Raffaelli, D., 1982. Recent ecological research on some European species of Littorina. Journal of Molluscan Studies, 48 (3), 342-354.

    229. Raffaelli, D.G.  & Hawkins, S.J., 1999. Intertidal Ecology 2nd edn.. London: Kluwer Academic Publishers.

    230. Rainbow, P.S., 1984. An introduction to the biology of British littoral barnacles. Field Studies, 6, 1-51.

    231. Ramsay, K., Kaiser, M.J. & Hughes, R.N. 1998. The responses of benthic scavengers to fishing disturbance by towed gears in different habitats. Journal of Experimental Marine Biology and Ecology, 224, 73-89.

    232. Read, K.R.H. & Cumming, K.B., 1967. Thermal tolerance of the bivalve mollusc Modiolus modiolus (L.), Mytilus edulis (L.) and Brachiodontes demissus (Dillwyn). Comparative Biochemistry and Physiology, 22, 149-155.

    233. Reinhardt, J.F., Gallagher, K.L., Stefaniak, L.M., Nolan, R., Shaw, M.T. & Whitlatch, R. B., 2012. Material properties of Didemnum vexillum and prediction of tendril fragmentation. Marine Biology, 159 (12), 2875-2884. DOI https://doi.org/10.1007/s00227-012-2048-9

    234. Ribeiro, P.A., Xavier, R., Santos, A.M. & Hawkins, S.J., 2009. Reproductive cycles of four species of Patella (Mollusca: Gastropoda) on the northern and central Portuguese coast. Journal of the Marine Biological Association of the United Kingdom, 89 (06), 1215-1221.

    235. Robles, C., 1982. Disturbance and predation in an assemblage of herbivorous Diptera and algae on rocky shores. Oecologia, 54 (1), 23-31.

    236. Rognstad, R.L., Wethey, D.S. & Hilbish, T.J., 2014. Connectivity and population repatriation: limitations of climate and input into the larval pool. Marine Ecology Progress Series, 495, 175-183.

    237. Kleeman, S.N., 2009. Didemnum vexillum - Feasibility of Eradication and/or Control. CCW Contract Science report, 53 pp.

    238. Sanford, E., Bermudez, D., Bertness, M.D. & Gaines, S.D., 1994. Flow, food supply and acorn barnacle population dynamics. Marine Ecology Progress Series, 104, 49-49.

    239. Scheibling, R.E., Lyons, D.A. & Sumi, C.B., 2008. Grazing of the invasive alga Codium fragile ssp. tomentosoides by the common periwinkle Littorina littorea: effects of thallus size, age and condition. Journal of Experimental Marine Biology and Ecology, 355 (2), 103-113.

    240. Schiel, D.R. & Foster, M.S., 1986. The structure of subtidal algal stands in temperate waters. Oceanography and Marine Biology: an Annual Review, 24, 265-307.

    241. Schiel, D.R. & Taylor, D.I., 1999. Effects of trampling on a rocky intertidal algal assemblage in southern New Zealand. Journal of Experimental Marine Biology and Ecology, 235, 213-235.

    242. Seapy , R.R. & Littler, M.M., 1982. Population and Species Diversity Fluctuations in a Rocky Intertidal Community Relative to Severe Aerial Exposure and Sediment Burial. Marine Biology, 71, 87-96.

    243. Seed, R. & Suchanek, T.H., 1992. Population and community ecology of Mytilus. In The mussel Mytilus: ecology, physiology, genetics and culture, (ed. E.M. Gosling), pp. 87-169. Amsterdam: Elsevier Science Publ. [Developments in Aquaculture and Fisheries Science, no. 25.]

    244. Seed, R., 1969b. The ecology of Mytilus edulis L. (Lamellibranchiata) on exposed rocky shores 2. Growth and mortality. Oecologia, 3, 317-350.

    245. Seed, R., 1996. Patterns of biodiversity in the macro-invertebrate fauna associated with mussel patches on rocky shores. Journal of the Marine Biological Association of the United Kingdom, 76, 203-210.

    246. Shanks, A.L. & Wright, W.G., 1986. Adding teeth to wave action- the destructive effects of wave-bourne rocks on intertidal organisms. Oecologia, 69 (3), 420-428.

    247. Shumway, S.E., 1990. A review of the effects of algal blooms on shellfish and aquaculture. Journal of the World Aquaculture Society, 21, 65-104.

    248. Shumway, S.E., 1992. Mussels and public health. In The mussel Mytilus: ecology, physiology, genetics and culture, (ed. E. Gosling), pp. 511-542. Amsterdam: Elsevier Science Publ. [Developments in Aquaculture and Fisheries Science, no. 25]

    249. Smith, B.S., 1980. The estuarine mud snail, Nassarius obsoletus: abnormalities in the reproductive system. Journal of Molluscan Studies, 46, 247-256.

    250. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

    251. Southward, A.J. & Crisp, D.J., 1956. Fluctuations in the distribution and abundance of intertidal barnacles. Journal of the Marine Biological Association of the United Kingdom, 35, 211-229.

    252. Southward, A.J. & Southward, E.C., 1978. Recolonisation of rocky shores in Cornwall after use of toxic dispersants to clean up the Torrey Canyon spill. Journal of the Fisheries Research Board of Canada, 35, 682-706.

    253. Southward, A.J., 1964. Limpet grazing and the control of vegetation on rocky shores. In Grazing in Terrestrial and Marine Environments, British Ecological Society Symposium No. 4 (ed. D.J. Crisp), 265-273.

    254. Southward, A.J., Hawkins, S.J. & Burrows, M.T., 1995. Seventy years observations of changes in distribution and abundance of zooplankton and intertidal organisms in the western English Channel in relation to rising sea temperature. Journal of Thermal Biology, 20, 127-155.

    255. Spagnolo, A., Auriemma, R., Bacci, T., Balkovic, I., Bertasi, F., Bolognini, L., Cabrini, M., Cilenti, L., Cuicchi, C., Cvitkovic, I., Despalatovic, M., Grati, F., Grossi, L., Jaklin, A., Lipej, L., Markovic, O., Mavric, B., Mikac, B., Nasi, F., Nerlovic, V., Pelosi, S., Penna, M., Petovic, S., Punzo, E., Santucci, A., Scirocco, T., Strafella, P., Trabucco, B., Travizi, A. & Zuljevic, A., 2019. Non-indigenous macrozoobenthic species on hard substrata of selected harbours in the Adriatic Sea. Marine Pollution Bulletin, 147, 150-158. DOI https://doi.org/10.1016/j.marpolbul.2017.12.031

    256. Spencer, B. E., Edwards, D. B., Kaiser, M. J. & Richardson, C. A., 1994. Spatfalls of the non-native Pacific oyster, Crassostrea gigas, in British waters. Aquatic Conservation: Marine and Freshwater Ecosystems, 4 (3), 203-217. DOI https://doi.org/10.1002/aqc.3270040303

    257. Stefaniak, L. M. & Whitlatch, R. B., 2014. Life history attributes of a global invader: factors contributing to the invasion potential of Didemnum vexillum. Aquatic Biology, 21 (3), 221-229. DOI https://doi.org/10.3354/ab00591

    258. Stefaniak, L., Zhang, H., Gittenberger, A., Smith, K., Holsinger, K., Lin, S. & Whitlatch, R.B., 2012. Determining the native region of the putatively invasive ascidian Didemnum vexillum Kott, 2002. Journal of Experimental Marine Biology and Ecology, 422-423, 64-71. DOI https://doi.org/10.1016/j.jembe.2012.04.012

    259. Stefaniak, L.M., McAtee, J. & Shulman, M.J., 2005. The costs of being bored: Effects of a clionid sponge on the gastropod Littorina littorea (L). Journal of Experimental Marine Biology and Ecology, 327 (1), 103-114.

    260. Storey, K.B., Lant, B., Anozie, O.O. & Storey, J.M., 2013. Metabolic mechanisms for anoxia tolerance and freezing survival in the intertidal gastropod, Littorina littorea. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 165 (4), 448-459.

    261. Suchanek, T.H., 1978. The ecology of Mytilus edulis L. in exposed rocky intertidal communities. Journal of Experimental Marine Biology and Ecology, 31, 105-120.

    262. Suchanek, T.H., 1985. Mussels and their role in structuring rocky shore communities. In The Ecology of Rocky Coasts: essays presented to J.R. Lewis, D.Sc., (ed. P.G. Moore & R. Seed), pp. 70-96.

    263. Suchanek, T.H., 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist, 33, 510-523. DOI https://doi.org/10.1093/icb/33.6.510

    264. Svåsand, T., Crosetti, D., García-Vázquez, E. & Verspoor, E., 2007. Genetic impact of aquaculture activities on native populations. Genimpact final scientific report (EU contract n. RICA-CT-2005-022802).

    265. Sweet, N.S. & Sewell, J. 2014. Asian shore crab, Hemigrapsus sanguineusGreat Britain Non-native Species Secretariat. [cited 16/06/2015]. Available from: <http://www.nonnativespecies.org

    266. Tagliapietra, D., Keppel, E., Sigovini, M. & Lambert, G., 2012. First record of the colonial ascidian Didemnum vexillum Kott, 2002 in the Mediterranean: Lagoon of Venice (Italy). Bioinvasions Records, 1 (4), 247-254. DOI http://dx.doi.org/10.3391/bir.2012.1.4.02

    267. Terry, L. & Sell, D., 1986. Rocky shores in the Moray Firth. Proceedings of the Royal Society of Edinburgh. Section B. Biological Sciences, 91, 169-191.

    268. Thompson, G.B., 1980. Distribution and population dynamics of the limpet Patella vulgata in Bantry Bay. Journal of Experimental Marine Biology and Ecology, 45, 173-217.

    269. Thompson, I., Richardson, C., Seed R. & Walker G., 2000. Quantification of mussel (Mytilus edulis) growth from power station cooling waters in response to chlorination procedures. Biofouling, 16(1), 1-15.

    270. Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W., McGonigle, D. & Russell, A.E., 2004. Lost at sea: where is all the plastic? Science, 304 (5672), 838-838.

    271. Tighe-Ford, D., 1967. Possible mechanism for the endocrine control of breeding in a cirripede. Nature, 216, 920-921.

    272. Tillin, H.M., Kessel, C., Sewell, J., Wood, C.A. & Bishop, J.D.D., 2020. Assessing the impact of key Marine Invasive Non-Native Species on Welsh MPA habitat features, fisheries and aquaculture. NRW Evidence Report. Report No: 454. Natural Resources Wales, Bangor, 260 pp. Available from https://naturalresourceswales.gov.uk/media/696519/assessing-the-impact-of-key-marine-invasive-non-native-species-on-welsh-mpa-habitat-features-fisheries-and-aquaculture.pdf

    273. Trager, G. C., Hwang, J. S., & Strickler, J. R. 1990. Barnacle suspension-feeding in variable flow. Marine Biology105(1), 117-127.

    274. Troost, K., 2010. Causes and effects of a highly successful marine invasion: case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. Journal of Sea Research, 64 (3), 145-165. DOI https://doi.org/10.1016/j.seares.2010.02.004

    275. Tsuchiya, M. & Nishihira, M., 1985. Islands of Mytilus as a habitat for small intertidal animals: effect of island size on community structure. Marine Ecology Progress Series, 25, 71-81.

    276. Tsuchiya, M. & Nishihira, M., 1986. Islands of Mytilus edulis as a habitat for small intertidal animals: effect of Mytilus age structure on the species composition of the associated fauna and community organization. Marine Ecology Progress Series, 31, 171-178.

    277. Tyler-Walters, H. & Arnold, C., 2008. Sensitivity of Intertidal Benthic Habitats to Impacts Caused by Access to Fishing Grounds. Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales from the Marine Life Information Network (MarLIN) [Contract no. FC 73-03-327], Marine Biological Association of the UK, Plymouth, 48 pp. Available from: www.marlin.ac.uk/publications

    278. UKTAG, 2014. UK Technical Advisory Group on the Water Framework Directive [online]. Available from: http://www.wfduk.org

    279. Vadas, R.L., Johnson, S. & Norton, T.A., 1992. Recruitment and mortality of early post-settlement stages of benthic algae. British Phycological Journal, 27, 331-351.

    280. Valentine, P.C., Carman, M.R., Blackwood, D.S. & Heffron, E.J., 2007a. Ecological observations on the colonial ascidian Didemnum sp. in a New England tide pool habitat. Journal of Experimental Marine Biology and Ecology, 342 (1), 109-121. DOI https://doi.org/10.1016/j.jembe.2006.10.021

    281. Valentine, P.C., Collie, J.S., Reid, R.N., Asch, R.G., Guida, V.G. & Blackwood, D.S., 2007b. The occurrence of the colonial ascidian Didemnum sp. on Georges Bank gravel habitat — Ecological observations and potential effects on groundfish and scallop fisheries. Journal of Experimental Marine Biology and Ecology, 342 (1), 179-181. DOI https://doi.org/10.1016/j.jembe.2006.10.038

    282. Van de Werfhorst, L.C. & Pearse J.S., 2007. Trampling in the rocky intertidal of central California: a follow-up study. Bulletin of Marine Science, 81(2), 245-254.

    283. Vercaemer, B., Sephton, D., Clément, P., Harman, A., Stewart-Clark, S. & DiBacco, C., 2015. Distribution of the non-indigenous colonial ascidian Didemnum vexillum (Kott, 2002) in the Bay of Fundy and on offshore banks, eastern Canada. Management of Biological Invasions, 6, 385-394. DOI https://doi.org/10.3391/mbi.2015.6.4.07

    284. Weniger, E., Cornelius, A., Rolff, J. & Buschbaum, C., 2022. Soft-bottom tidepools within mixed reefs of native mussels and introduced oysters - refuge for associated species and parasites?. Journal of the Marine Biological Association of the United Kingdom, 101 (7), 1019-1028. DOI https://doi.org/10.1017/s0025315422000091

    285. Wethey, D.S., 1985. Catastrophe, Extinction, and Species Diversity: A Rocky Intertidal Example. Ecology, 66 (2), 445-456.

    286. Wethey, D.S., 1984. Sun and shade mediate competition in the barnacles Chthamalus and Semibalanus: a field experiment. The Biological Bulletin, 167 (1), 176-185.

    287. Wethey, D.S., Woodin, S.A., Hilbish, T.J., Jones, S.J., Lima, F.P. & Brannock, P.M., 2011. Response of intertidal populations to climate: effects of extreme events versus long term change. Journal of Experimental Marine Biology and Ecology, 400 (1), 132-144.

    288. Whitehouse, J., Coughlan, J., Lewis, B., Travade, F. & Britain, G., 1985. The control of biofouling in marine and estuarine power stations: a collaborative research working group report for use by station designers and station managers. Central Electricity Generating Board

    289. Widdows J., Lucas J.S., Brinsley M.D., Salkeld P.N. & Staff F.J., 2002. Investigation of the effects of current velocity on mussel feeding and mussel bed stability using an annular flume. Helgoland Marine Research, 56(1), 3-12.

    290. Widdows, J. & Donkin, P., 1992. Mussels and environmental contaminants: bioaccumulation and physiological aspects. In The mussel Mytilus: ecology, physiology, genetics and culture, (ed. E.M. Gosling), pp. 383-424. Amsterdam: Elsevier Science Publ. [Developments in Aquaculture and Fisheries Science, no. 25]

    291. Widdows, J., 1991. Physiological ecology of mussel larvae. Aquaculture, 94, 147-163.

    292. Widdows, J., Donkin, P., Brinsley, M.D., Evans, S.V., Salkeld, P.N., Franklin, A., Law, R.J. & Waldock, M.J., 1995. Scope for growth and contaminant levels in North Sea mussels Mytilus edulis. Marine Ecology Progress Series, 127, 131-148.

    293. Withers, R., Farnham, W., Lewey, S., Jephson, N., Haythorn, J. & Gray, P., 1975. The epibionts of Sargassum muticum in British waters. Marine Biology, 31 (1), 79-86.

    294. Wood, C., 2015. The red ripple bryozoan Watersipora subatra. Great Britain Non-native Species Secretariat. [On-line][cited 16/06/2015]. Available from: http://www.nonnativespecies.org/factsheet/factsheet.cfm?speciesId=3748

    295. Wood, L. E., Silva, T. A. M., Heal, R., Kennerley, A., Stebbing, P., Fernand, L. & Tidbury, H. J., 2021. Unaided dispersal risk of Magallana gigas into and around the UK: combining particle tracking modelling and environmental suitability scoring. Biological Invasions, 23 (6), 1719-1738. DOI https://doi.org/10.1007/s10530-021-02467-x

    296. Wrange, Anna-Lisa, Valero, Johanna, Harkestad, Lisbeth S., Strand, Øivind, Lindegarth, Susanne, Christensen, Helle Torp, Dolmer, Per, Kristensen, Per Sand & Mortensen, Stein, 2010. Massive settlements of the Pacific oyster, Crassostrea gigas, in Scandinavia. Biological Invasions, 12 (5), 1145-1152. DOI https://doi.org/10.1007/s10530-009-9535-z

    297. Young, G.A., 1985. Byssus thread formation by the mussel Mytilus edulis: effects of environmental factors. Marine Ecology Progress Series, 24, 261-271.

    298. Zandee, D.I., Holwerda, D.A., Kluytmans, J.H. & De Zwaan, A., 1986. Metabolic adaptations to environmental anoxia in the intertidal bivalve mollusc Mytilus edulis L. Netherlands Journal of Zoology, 36(3), 322-343.

    299. Zwerschke, N., Eagling, L., Roberts, D. & O'Connor, N., 2020. Can an invasive species compensate for the loss of a declining native species? Functional similarity of native and introduced oysters. Marine Environmental Research, 153. DOI https://doi.org/10.1016/j.marenvres.2019.104793

    300. Zwerschke, N., Hollyman, P.R., Wild, R., Strigner, R., Turner, J.R. & King, J.W., 2018. Limited impact of an invasive oyster on intertidal assemblage structure and biodiversity: the importance of environmental context and functional equivalency with native species. Marine Biology, 165 (5), 89. DOI https://doi.org//10.1007/s00227-018-3338-7

    Citation

    This review can be cited as:

    Tillin, H.M., Hill, J.M. & Watson, A., 2024. Barnacles and Littorina spp. on unstable eulittoral mixed substrata. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 26-12-2024]. Available from: https://marlin.ac.uk/habitat/detail/340

     Download PDF version


    Last Updated: 05/12/2024