Honeycomb worm (Sabellaria alveolata)

Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help

Summary

Description

A frequently gregarious segmented worm that builds tubes from sand or shell fragments. Found intertidally (although occasionally subtidally) in exposed areas. Tubes often densely aggregated forming a honey comb pattern. May form large reefs up to several metres across and a metre deep.

Recorded distribution in Britain and Ireland

In Britain, most abundant on the south and west coasts with isolated records form the south east and east coasts. The northern limit is the Outer Hebrides. It is also found on south, west and north coasts of Ireland.

Global distribution

Mediterranean, north Atlantic south to Morocco. The British Isles form the northern limits of the distribution in the north east Atlantic

Habitat

Found on hard substrata on exposed, open coasts with moderate to considerable water movement where sand is available for tube building. Typically on the bottom third of the shoreline but also in the shallow sub-tidal.

Depth range

MTL - 10 metres

Identifying features

  • Usually forms sheets or reefs.
  • Inhabits tube made from coarse, cemented sand or shell grains.
  • Thorax with three pairs of flattened chaetal sheaths.
  • Inner and middle rows of opercular chaetae with asymmetrically angular spines pointing distally and transversely respectively.

Additional information

At low densities tubes are attached to the substratum along the entire length but at greater densities competition for space results in the tubes overlapping and may cause the tubes to be built outwards, away from the substrate. Tube colour varies according to the colour of sand grains

Listed by

- none -

Biology review

Taxonomy

LevelScientific nameCommon name
PhylumAnnelida
ClassPolychaeta
FamilySabellariidae
GenusSabellaria
Authority(Linnaeus, 1767)
Recent Synonyms

Biology

ParameterData
Typical abundanceHigh density
Male size range3-4 cm
Male size at maturity
Female size rangeSmall-medium(3-10cm)
Female size at maturity
Growth formTubicolous
Growth rate12 cm/year
Body flexibility
MobilitySessile, permanent attachment
Characteristic feeding methodActive suspension feeder
Diet/food sourcePlanktotroph
Typically feeds onSeston
SociabilityGregarious
Environmental positionEpifaunal
DependencyIndependent.
SupportsSubstratum

a variety of associated fauna and flora depending on form and age of colony: particularly mussels, barnacles and ephemeral algae

Is the species harmful?No

Biology information

The size listed refers to individual worms. It is typically gregarious, forming colonies of sheets, hummocks or reefs. In Cornwall, their tubes are up to 20 cm in length and around 5 mm in diameter at the external opening. Each tube has an additional porch over the opening. In northern France, the tubes were reported to grow in length at 12 cm/year. This species appears to be favoured by elevated winter temperatures associated with cooling water discharges (Bamber & Irving, 1997) but growth is inhibited below 5°C.  The communities associated with Sabellaria alveolata are not particularly remarkable being species poor on young dense reefs while up to 38 species have been recorded on older reefs. Honeycomb worm aggregations that bind together mobile cobbles increase heterogeneity.

Habitat preferences

ParameterData
Physiographic preferencesOpen coast
Biological zone preferencesLower eulittoral, Mid eulittoral, Sublittoral fringe, Upper infralittoral
Substratum / habitat preferencesBedrock, Cobbles, Large to very large boulders, Pebbles, Small boulders
Tidal strength preferencesModerately strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.)
Wave exposure preferencesExposed, Moderately exposed, Very exposed
Salinity preferencesFull (30-40 psu)
Depth rangeMTL - 10 metres
Other preferences

No text entered

Migration PatternNon-migratory or resident

Habitat Information

The honeycomb worm appears to be absent from many exposed peninsulas, probably due to the effects of water movement on recruitment. Although a hard substratum is required for attachment, there needs to be adequate sand or small shell particles from which to construct the tubes.  It is typically found in the low intertidal but occasionally found subtidally (e.g. in the Severn estuary). It typically colonizes bedrock or large boulders but in some sites binds together small cobbles in a complex with mussels. It has a strong settlement preference for adult tubes or sites currently or previously used by the species.

Life history

Adult characteristics

ParameterData
Reproductive typeGonochoristic (dioecious)
Reproductive frequency Annual episodic
Fecundity (number of eggs)100,000-1,000,000
Generation timeInsufficient information
Age at maturityIn good conditions worms mature within the first year.
SeasonJuly - July
Life span2-5 years

Larval characteristics

ParameterData
Larval/propagule type-
Larval/juvenile development Planktotrophic
Duration of larval stage1-6 months
Larval dispersal potential Greater than 10 km
Larval settlement periodInsufficient information

Life history information

Most individuals have a lifespan of three to five years but there are records of seven and even nine year old individuals. Sabellaria alveolata reefs undergo cycles of development and decay over a period of a few years. Although individual reefs come and go, areas that are good for Sabellaria alveolata tend to remain so. Spawning occurs each July but actual recruitment levels vary considerably from year to year. Larvae spend between 6 weeks and 6 months in the plankton.

Sensitivity reviewHow is sensitivity assessed?

Physical pressures

Use / to open/close text displayed

 IntoleranceRecoverabilitySensitivityEvidence / Confidence
Substratum loss [Show more]

Substratum loss

Benchmark. All of the substratum occupied by the species or biotope under consideration is removed. A single event is assumed for sensitivity assessment. Once the activity or event has stopped (or between regular events) suitable substratum remains or is deposited. Species or community recovery assumes that the substratum within the habitat preferences of the original species or community is present. Further details

Evidence

The species is fixed to the substratum so substratum removal will cause mortality. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take several years.
High Moderate Moderate Low
Smothering [Show more]

Smothering

Benchmark. All of the population of a species or an area of a biotope is smothered by sediment to a depth of 5 cm above the substratum for one month. Impermeable materials, such as concrete, oil, or tar, are likely to have a greater effect. Further details.

Evidence

Tolerant to burial under sand for up to several weeks. Feeding and growth will be curtailed. Depending on timing this may interfere with reproduction. Recoverability is almost immediate (Wilson, 1971).
Low Immediate Not sensitive High
Increase in suspended sediment [Show more]

Increase in suspended sediment

Benchmark. An arbitrary short-term, acute change in background suspended sediment concentration e.g., a change of 100 mg/l for one month. The resultant light attenuation effects are addressed under turbidity, and the effects of rapid settling out of suspended sediment are addressed under smothering. Further details

Evidence

Tube growth is dependent on the presence of suspended particles hence a reduction in siltation may hinder tube construction. An increase in siltation may facilitate tube building but clog up feeding apparatus. Recovery occurs when the population is able to recommence feeding and growing.
Low Very high Very Low Low
Decrease in suspended sediment [Show more]

Decrease in suspended sediment

Benchmark. An arbitrary short-term, acute change in background suspended sediment concentration e.g., a change of 100 mg/l for one month. The resultant light attenuation effects are addressed under turbidity, and the effects of rapid settling out of suspended sediment are addressed under smothering. Further details

Evidence

No information
Desiccation [Show more]

Desiccation

  1. A normally subtidal, demersal or pelagic species including intertidal migratory or under-boulder species is continuously exposed to air and sunshine for one hour.
  2. A normally intertidal species or community is exposed to a change in desiccation equivalent to a change in position of one vertical biological zone on the shore, e.g., from upper eulittoral to the mid eulittoral or from sublittoral fringe to lower eulittoral for a period of one year. Further details.

Evidence

Species is typically intertidal and so is regularly exposed to drying influences. When exposed to the air the worm retracts into its tube and closes the operculum over the entrance reducing evaporation. Changes in desiccation for the period of a year may cause some of the population to die. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Increase in emergence regime [Show more]

Increase in emergence regime

Benchmark. A one hour change in the time covered or not covered by the sea for a period of one year. Further details

Evidence

A reduction in the amount of time spent under water could cause a proportion of a colony to die due to restricted feeding. The species also occurs subtidally so a decrease in emergence time will have no effect. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Decrease in emergence regime [Show more]

Decrease in emergence regime

Benchmark. A one hour change in the time covered or not covered by the sea for a period of one year. Further details

Evidence

No information
Increase in water flow rate [Show more]

Increase in water flow rate

A change of two categories in water flow rate (view glossary) for 1 year, for example, from moderately strong (1-3 knots) to very weak (negligible). Further details

Evidence

The species inhabits areas with high water flow so an increase in rate is likely to have little effect. A reduction of water flow by two categories is likely to cause exposure to conditions outside the normal range for the species. This may be sufficient to reduce availability of suspended particles, hindering growth and repair and feeding. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Decrease in water flow rate [Show more]

Decrease in water flow rate

A change of two categories in water flow rate (view glossary) for 1 year, for example, from moderately strong (1-3 knots) to very weak (negligible). Further details

Evidence

No information
Increase in temperature [Show more]

Increase in temperature

  1. A short-term, acute change in temperature; e.g., a 5°C change in the temperature range for three consecutive days. This definition includes ‘short-term’ thermal discharges.
  2. A long-term, chronic change in temperature; e.g. a 2°C change in the temperature range for a year. This definition includes ‘long term’ thermal discharges.

For intertidal species or communities, the range of temperatures includes the air temperature regime for that species or community. Further details

Evidence

The species is typically intertidal. Intolerance assessment is in relation to short term acute temperature change. Growth inhibited below 5 degrees C. Damaged or killed by frost. Long term slight increase in temperature is unlikely to have any effect on British populations as global distribution extends South to Morocco. Long term slight decrease in temperature may reduce viability of populations. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Decrease in temperature [Show more]

Decrease in temperature

  1. A short-term, acute change in temperature; e.g., a 5°C change in the temperature range for three consecutive days. This definition includes ‘short-term’ thermal discharges.
  2. A long-term, chronic change in temperature; e.g. a 2°C change in the temperature range for a year. This definition includes ‘long term’ thermal discharges.

For intertidal species or communities, the range of temperatures includes the air temperature regime for that species or community. Further details

Evidence

No information
Increase in turbidity [Show more]

Increase in turbidity

  1. A short-term, acute change; e.g., two categories of the water clarity scale (see glossary) for one month, such as from medium to extreme turbidity.
  2. A long-term, chronic change; e.g., one category of the water clarity scale (see glossary) for one year, such as from low to medium turbidity. Further details

Evidence

No reliance on visual sense for feeding, reproducing etc.
Tolerant Not relevant Not sensitive Low
Decrease in turbidity [Show more]

Decrease in turbidity

  1. A short-term, acute change; e.g., two categories of the water clarity scale (see glossary) for one month, such as from medium to extreme turbidity.
  2. A long-term, chronic change; e.g., one category of the water clarity scale (see glossary) for one year, such as from low to medium turbidity. Further details

Evidence

No information
Increase in wave exposure [Show more]

Increase in wave exposure

A change of two ranks on the wave exposure scale (view glossary) e.g., from Exposed to Extremely exposed for a period of one year. Further details

Evidence

Requires sufficient water action to suspend coarse sand particles in order to build tubes and so is found in quite exposed areas. Most colonies die through eventual break up by wave action. Increased exposure will result in potentially shorter colony life. Reduced exposure may mean the population exists outside of its preferred conditions with insufficient water action to provide sand particles or food. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Decrease in wave exposure [Show more]

Decrease in wave exposure

A change of two ranks on the wave exposure scale (view glossary) e.g., from Exposed to Extremely exposed for a period of one year. Further details

Evidence

No information
Noise [Show more]

Noise

  1. Underwater noise levels e.g., the regular passing of a 30-metre trawler at 100 metres or a working cutter-suction transfer dredge at 100 metres for one month during important feeding or breeding periods.
  2. Atmospheric noise levels e.g., the regular passing of a Boeing 737 passenger jet 300 metres overhead for one month during important feeding or breeding periods. Further details

Evidence

The species is unlikely to respond to noise vibrations
Tolerant Not relevant Not sensitive High
Visual presence [Show more]

Visual presence

Benchmark. The continuous presence for one month of moving objects not naturally found in the marine environment (e.g., boats, machinery, and humans) within the visual envelope of the species or community under consideration. Further details

Evidence

Most polychaetes have photoreceptors but the species is probably unable to resolve moving objects. The worms may retract into tube on disturbance. Whether this is through light detection or mechanical stimulus is uncertain.
Tolerant Not relevant Not sensitive High
Abrasion & physical disturbance [Show more]

Abrasion & physical disturbance

Benchmark. Force equivalent to a standard scallop dredge landing on or being dragged across the organism. A single event is assumed for assessment. This factor includes mechanical interference, crushing, physical blows against, or rubbing and erosion of the organism or habitat of interest. Where trampling is relevant, the evidence and trampling intensity will be reported in the rationale. Further details.

Evidence

Abrasion through trampling can affect this species but it is surprisingly tolerant (Cunningham et al., 1984). The main cause of colony destruction is through wave action. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement, as this is the preferred substratum (Wilson 1929). Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take several years.
Intermediate High Low Moderate
Displacement [Show more]

Displacement

Benchmark. Removal of the organism from the substratum and displacement from its original position onto a suitable substratum. A single event is assumed for assessment. Further details

Evidence

Worms are not able to rebuild tubes if removed from them (Wilson 1929).
High Moderate Moderate High

Chemical pressures

Use [show more] / [show less] to open/close text displayed

 IntoleranceRecoverabilitySensitivityEvidence / Confidence
Synthetic compound contamination [Show more]

Synthetic compound contamination

Sensitivity is assessed against the available evidence for the effects of contaminants on the species (or closely related species at low confidence) or community of interest. For example:

  • evidence of mass mortality of a population of the species or community of interest (either short or long term) in response to a contaminant will be ranked as high sensitivity;
  • evidence of reduced abundance, or extent of a population of the species or community of interest (either short or long term) in response to a contaminant will be ranked as intermediate sensitivity;
  • evidence of sub-lethal effects or reduced reproductive potential of a population of the species or community of interest will be assessed as low sensitivity.

The evidence used is stated in the rationale. Where the assessment can be based on a known activity then this is stated. The tolerance to contaminants of species of interest will be included in the rationale when available; together with relevant supporting material. Further details.

Evidence

Although the larvae are potentially very intolerant of some oil dispersants it is unlikely that Sabellaria alveolata has any special intolerance to chemicals (Holt et al., 1998).
No information No information No information Not relevant
Heavy metal contamination [Show more]

Heavy metal contamination

Evidence

Insufficient
information
No information No information No information Not relevant
Hydrocarbon contamination [Show more]

Hydrocarbon contamination

Evidence

Insufficient
information
No information No information No information Not relevant
Radionuclide contamination [Show more]

Radionuclide contamination

Evidence

Insufficient
information
No information No information No information Not relevant
Changes in nutrient levels [Show more]

Changes in nutrient levels

Evidence

Insufficient
information
No information No information No information Not relevant
Increase in salinity [Show more]

Increase in salinity

  1. A short-term, acute change; e.g., a change of two categories from the MNCR salinity scale for one week (view glossary) such as from full to reduced.
  2. A long-term, chronic change; e.g., a change of one category from the MNCR salinity scale for one year (view glossary) such as from reduced to low. Further details.

Evidence

Species only occurs in fully marine environment, however, as it frequently occurs in the intertidal, it must be able to tolerate some reduced salinity caused by precipitation run off. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Decrease in salinity [Show more]

Decrease in salinity

  1. A short-term, acute change; e.g., a change of two categories from the MNCR salinity scale for one week (view glossary) such as from full to reduced.
  2. A long-term, chronic change; e.g., a change of one category from the MNCR salinity scale for one year (view glossary) such as from reduced to low. Further details.

Evidence

No information
Changes in oxygenation [Show more]

Changes in oxygenation

Benchmark.  Exposure to a dissolved oxygen concentration of 2 mg/l for one week. Further details.

Evidence

Cole et al. (1999) suggest possible adverse effects on marine species below 4 mg/l and probable adverse effects below 2 mg/l. There is no information about Sabellaria alveolata tolerance to changes in oxygenation. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Very low

Biological pressures

Use [show more] / [show less] to open/close text displayed

 IntoleranceRecoverabilitySensitivityEvidence / Confidence
Introduction of microbial pathogens/parasites [Show more]

Introduction of microbial pathogens/parasites

Benchmark. Sensitivity can only be assessed relative to a known, named disease, likely to cause partial loss of a species population or community. Further details.

Evidence

Insufficient
information
No information No information No information Not relevant
Introduction of non-native species [Show more]

Introduction of non-native species

Sensitivity assessed against the likely effect of the introduction of alien or non-native species in Britain or Ireland. Further details.

Evidence

Insufficient
information
No information No information No information Not relevant
Extraction of this species [Show more]

Extraction of this species

Benchmark. Extraction removes 50% of the species or community from the area under consideration. Sensitivity will be assessed as 'intermediate'. The habitat remains intact or recovers rapidly. Any effects of the extraction process on the habitat itself are addressed under other factors, e.g. displacement, abrasion and physical disturbance, and substratum loss. Further details.

Evidence

Extraction by bait digging is a possibility. Automatically assessed as intermediate assuming 50 percent removal. Variability in recruitment (dependent on suitable environmental conditions) means that recovery could take a few years. The presence of some remaining adults will assist in larval settlement as this is the preferred substratum (Wilson 1929).
Intermediate High Low Low
Extraction of other species [Show more]

Extraction of other species

Benchmark. A species that is a required host or prey for the species under consideration (and assuming that no alternative host exists) or a keystone species in a biotope is removed. Any effects of the extraction process on the habitat itself are addressed under other factors, e.g. displacement, abrasion and physical disturbance, and substratum loss. Further details.

Evidence

Bait collection occurs in Portugal for crabs etc. living in the gaps between worm tubes.
Intermediate High Low Low

Additional information

Importance review

Policy/legislation

DesignationSupport

Status

Non-native

ParameterData
Native-
Origin-
Date Arrived-

Importance information

Few crevice fauna are associated with reefs. The main colonizing species are epifaunal. Fishermen occasionally dig out the worms from reefs for use as bait.
Well-established reefs can exclude other organisms such as weeds, barnacles and limpets from the substratum. Sabellaria alveolata reefs are well represented in candidate SACs. Actively growing reefs can out-compete all other littoral species for space.

Bibliography

  1. Bamber, R.N. & Irving, P.W., 1997. The differential growth of Sabellaria alveolata (L.) reefs at a power station outfall. Polychaete Research, 17, 9-14.

  2. Campbell, A., 1994. Seashores and shallow seas of Britain and Europe. London: Hamlyn.

  3. Cunningham, P.N., Hawkins, S.J., Jones, H.D. & Burrows, M.T., 1984. The geographical distribution of Sabellaria alveolata (L.) in England, Wales and Scotland, with investigations into the community structure of and the effects of trampling on Sabellaria alveolata colonies. Nature Conservancy Council, Peterborough, Contract Report no. HF3/11/22., University of Manchester, Department of Zoology.

  4. Gruet, Y. & Lassus, P., 1983. Contribution a l'etude de la biologie reproductive d'une population naturelle de l'Annelide Polychete, Sabellaria alveolata (Linnaeus). Annals of the Institute of Oceanography, Monaco, 59, 127 - 140.

  5. Gruet, Y., 1985. Recherches sur l'é cologie des ré cifs d'hermelles édifiés par l'annélide polychète Sabellaria alveolata (Linné). Journal de Recherche Oceanographique, 10, 32-35.

  6. Gruet, Y., 1986. Spatio-temporal changes of sabellarian reefs built by the sedentary polychaete Sabellaria alveolata (Linnaeus) Marine Ecology, Pubblicazioni della Stazione Zoologica di Napoli I, 7, 303-319.

  7. Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.

  8. Holt, T.J., Rees, E.I., Hawkins, S.J. & Seed, R., 1998. Biogenic reefs (Volume IX). An overview of dynamic and sensitivity characteristics for conservation management of marine SACs. Scottish Association for Marine Science (UK Marine SACs Project), 174 pp. Available from: http://ukmpa.marinebiodiversity.org/uk_sacs/pdfs/biogreef.pdf

  9. Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]

  10. JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid

  11. Pawlik, J.R., 1968. Larval settlement and metamorphosis of gregarious sabellariid polychaetes, Sabellaria alveolata compared with Phragmatopoma californica. Journal of the Marine Biological Association of the United Kingdom, 68, 101-124.

  12. Picton, B.E. & Costello, M.J., 1998. BioMar biotope viewer: a guide to marine habitats, fauna and flora of Britain and Ireland. [CD-ROM] Environmental Sciences Unit, Trinity College, Dublin.

  13. Smith, J.E. (ed.), 1968. 'Torrey Canyon'. Pollution and marine life. Cambridge: Cambridge University Press.

  14. Wilson, D.P., 1929. The larvae of the British sabellarians. Journal of the Marine Biological Association of the United Kingdom, 16, 221-269.

  15. Wilson, D.P., 1968. Some aspects of the development of the eggs and larvae of Sabellaria alveolata (L.). Journal of the Marine Biological Association of the United Kingdom, 48, 367-86.

  16. Wilson, D.P., 1969. The honey comb worm. Sea Frontiers, 15, 322-29.

  17. Wilson, D.P., 1970a. Additional observations on larval growth and settlement of Sabellaria alveolata. Journal of the Marine Biological Association of the United Kingdom, 50, 1-32.

  18. Wilson, D.P., 1971. Sabellaria colonies at Duckpool, North Cornwall 1961 - 1970 Journal of the Marine Biological Association of the United Kingdom, 54, 509-580.

Datasets

  1. Bristol Regional Environmental Records Centre, 2017. BRERC species records recorded over 15 years ago. Occurrence dataset: https://doi.org/10.15468/h1ln5p accessed via GBIF.org on 2018-09-25.

  2. Bristol Regional Environmental Records Centre, 2017. BRERC species records within last 15 years. Occurrence dataset: https://doi.org/10.15468/vntgox accessed via GBIF.org on 2018-09-25.

  3. Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.

  4. Cofnod – North Wales Environmental Information Service, 2018. Miscellaneous records held on the Cofnod database. Occurrence dataset: https://doi.org/10.15468/hcgqsi accessed via GBIF.org on 2018-09-25.

  5. Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01

  6. Fife Nature Records Centre, 2018. St Andrews BioBlitz 2015. Occurrence dataset: https://doi.org/10.15468/xtrbvy accessed via GBIF.org on 2018-09-27.

  7. Fife Nature Records Centre, 2018. St Andrews BioBlitz 2016. Occurrence dataset: https://doi.org/10.15468/146yiz accessed via GBIF.org on 2018-09-27.

  8. Lancashire Environment Record Network, 2018. LERN Records. Occurrence dataset: https://doi.org/10.15468/esxc9a accessed via GBIF.org on 2018-10-01.

  9. Merseyside BioBank., 2018. Merseyside BioBank (unverified). Occurrence dataset: https://doi.org/10.15468/iou2ld accessed via GBIF.org on 2018-10-01.

  10. National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.

  11. NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.

  12. OBIS (Ocean Biodiversity Information System),  2025. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2025-01-22

  13. South East Wales Biodiversity Records Centre, 2018. SEWBReC Worms (South East Wales). Occurrence dataset: https://doi.org/10.15468/5vh0w8 accessed via GBIF.org on 2018-10-02.

  14. South East Wales Biodiversity Records Centre, 2018. Dr Mary Gillham Archive Project. Occurance dataset: http://www.sewbrec.org.uk/ accessed via NBNAtlas.org on 2018-10-02

Citation

This review can be cited as:

Jackson, A. 2008. Sabellaria alveolata Honeycomb worm. In Tyler-Walters H. Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. [cited 22-01-2025]. Available from: https://marlin.ac.uk/species/detail/1129

 Download PDF version


Last Updated: 29/04/2008