Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help
Researched by | Will Rayment | Refereed by | Dr Peter Gibbs |
Authority | (Saint-Joseph, 1894) | ||
Other common names | - | Synonyms | Tharyx marioni (Saint-Joseph, 1894) |
Aphelochaeta marioni is a thin, thread like, segmented worm. The fifth segment bears a pair of grooved tentacles, or palps, which are used for deposit feeding. The palps, which are tightly coiled when retracted, are approximately equal in length to the body. Numerous filamentous cirri, which act as gills, are arranged in pairs on each of the segments of the anterior half of the body. The bristles (chaetae) are very fine and hair like. Aphelochaeta marioni is reddish-brown in colour and typically between 20 and 35 mm in length, although individuals can reach 100 mm in length.
The name change from Tharyx marioni to Aphelochaeta marioni occurred recently and some authors still use the previous name. Therefore, care should be taken when searching the literature on this species. In this review, where the species was researched under the former name, the species name is given as Aphelochaeta marioni (studied as Tharyx marioni). Aphelochaeta marioni is very difficult to identify (Mike Kendall, pers. comm.) and some authors (e.g. Farke, 1979) have commented that specimens that have been the subject of published research may have been misidentified.
- none -
Phylum | Annelida | Segmented worms e.g. ragworms, tubeworms, fanworms and spoon worms |
Class | Polychaeta | Bristleworms, e.g. ragworms, scaleworms, paddleworms, fanworms, tubeworms and spoon worms |
Order | Terebellida | |
Family | Cirratulidae | |
Genus | Aphelochaeta | |
Authority | (Saint-Joseph, 1894) | |
Recent Synonyms | Tharyx marioni (Saint-Joseph, 1894) |
Typical abundance | High density | ||
Male size range | 10-100mm | ||
Male size at maturity | 10mm | ||
Female size range | 10mm | ||
Female size at maturity | |||
Growth form | Vermiform segmented | ||
Growth rate | 1-1.5mm/month | ||
Body flexibility | High (greater than 45 degrees) | ||
Mobility | |||
Characteristic feeding method | Not relevant, Surface deposit feeder | ||
Diet/food source | |||
Typically feeds on | Organic debris, diatoms | ||
Sociability | |||
Environmental position | Infaunal | ||
Dependency | Independent. | ||
Supports | None | ||
Is the species harmful? | No information |
Abundance
Gibbs (1969) studied the abundance of Aphelochaeta marioni (studied as Tharyx marioni) in Stonehouse Pool, Plymouth Sound. In silt/clay sediments at 5 m depth, the species occurred at a maximum density of 108,000 individuals/m2. In silt/clay and fine sand at the low water mark, the maximum density was 61,150 individuals/m2. Farke (1979) studied the abundance of Aphelochaeta marioni (studied as Tharyx marioni) in the Wadden Sea, Netherlands. In the intertidal, the maximum recorded abundance was 71,200 individuals/m2 in muddy sand.
Feeding
Aphelochaeta marioni is a deposit feeder, feeding at the surface of the sediment at night. While feeding the animal remains in its burrow and the two palps roam at the surface transporting sand, debris and diatoms to the mouth along a tentacle canal crenulated with cilia. Farke (1979) is unsure whether Aphelochaeta marioni is a selective feeder, but it seems not, as sand grains have been found in the gut of the animal.
Physiographic preferences | Open coast, Offshore seabed, Strait / sound, Estuary, Enclosed coast / Embayment |
Biological zone preferences | Bathybenthic (Bathyal), Circalittoral offshore, Lower circalittoral, Lower eulittoral, Lower infralittoral, Mid eulittoral, Sublittoral fringe, Upper circalittoral, Upper infralittoral |
Substratum / habitat preferences | Fine clean sand, Mud, Muddy sand, Sandy mud |
Tidal strength preferences | Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.) |
Wave exposure preferences | Extremely sheltered, Sheltered, Very sheltered |
Salinity preferences | Full (30-40 psu), Low (<18 psu), Reduced (18-30 psu), Variable (18-40 psu) |
Depth range | Mid shore to 5000 m |
Other preferences | |
Migration Pattern | Non-migratory / resident |
Reproductive type | Gonochoristic (dioecious) | |
Reproductive frequency | Annual episodic | |
Fecundity (number of eggs) | 100-1,000 | |
Generation time | 1-2 years | |
Age at maturity | 1 year | |
Season | See additional information | |
Life span | 2-3 years |
Larval/propagule type | - |
Larval/juvenile development | Lecithotrophic |
Duration of larval stage | Not relevant |
Larval dispersal potential | See additional information |
Larval settlement period |
The MarLIN sensitivity assessment approach used below has been superseded by the MarESA (Marine Evidence-based Sensitivity Assessment) approach (see menu). The MarLIN approach was used for assessments from 1999-2010. The MarESA approach reflects the recent conservation imperatives and terminology and is used for sensitivity assessments from 2014 onwards.
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | High | Moderate | Low | |
Aphelochaeta marioni lives infaunally in soft sediments. The physical removal of its substratum, e.g. as a result of channel dredging activities, would also remove the entire population of Aphelochaeta marioni and hence, intolerance is recorded as high. Aphelochaeta marioni has no pelagic phase in its lifecycle, and dispersal is limited to lateral movement by the slow burrowing of the adults and juveniles (Farke, 1979). Recoverability is recorded as high (see additional information below). | ||||
Low | Immediate | Not sensitive | Low | |
Aphelochaeta marioni lives infaunally in soft sediments and moves by burrowing. It deposit feeds at the surface by extending contractile palps from its burrow. An additional 5 cm layer of sediment would result in a temporary cessation of feeding activity, and therefore growth and reproduction are likely to be compromised. However, Aphelochaeta marioni would be expected to quickly relocate to its favoured depth, with no mortality, and hence an intolerance of low is recorded. Once the animals have relocated to the surface, feeding activity should return to normal and therefore a recoverability of immediate is recorded. | ||||
Tolerant* | Not relevant | Not sensitive* | Low | |
Aphelochaeta marioni is not likely to be perturbed by an increase in suspended sediment because it lives infaunally in soft sediment (Brenchley, 1981). It is a surface deposit feeder. While feeding, the animal remains in its burrow and the two palps roam at the surface transporting sand, debris and diatoms to the mouth along a tentacle canal crenulated with cilia (Farke, 1979). An increased rate of siltation may result in an increase in food availability and therefore growth and reproduction of Aphelochaeta marioni may be enhanced. However, food availability would only increase if the additional suspended sediment contained a significant proportion of organic matter and the population would only be enhanced if food was previously limiting. | ||||
Low | Immediate | Not sensitive | Low | |
Aphelochaeta marioni is a surface deposit feeder and therefore relies on a supply of nutrients at the sediment surface. A decrease in the suspended sediment would result in a decreased rate of deposition on the substratum surface and therefore a reduction in food availability for Aphelochaeta marioni. This would be likely to impair growth and reproduction. The benchmark states that this change would occur for one month and therefore would be unlikely to cause mortality. An intolerance of low is therefore recorded. As soon as suspended sediment levels increased, feeding activity would return to normal and hence recovery is recorded as immediate. | ||||
Not relevant | Not relevant | Not relevant | Not relevant | |
Aphelochaeta marioni lives infaunally in sediment that has a high silt content and retains a large amount of water. It is therefore protected from desiccation stress. | ||||
Intermediate | High | Low | Low | |
Aphelochaeta marioni lives in the intertidal zone in significant numbers (Gibbs, 1969; Farke, 1979). The species lives infaunally and hence is not likely to suffer from desiccation stress. However, Aphelochaeta marioni can only feed when immersed and therefore will experience reduced feeding opportunities. Over the course of a year the resultant energetic cost is likely to cause some mortality. In addition, increased emergence will increase the vulnerability to predation from shore birds. An intolerance of intermediate is therefore recorded. Recoverability is recorded as high (see additional information below). | ||||
Tolerant | Not relevant | Not sensitive | High | |
Aphelochaeta marioni thrives in the subtidal zone and therefore could potentially benefit from a decreased emergence regime. It is possible that decreased emergence would allow the species to colonize further up the shore. | ||||
Intermediate | High | Low | Low | |
An increase in water flow rate is not likely to affect Aphelochaeta marioni directly as it lives infaunally. However, increased water flow rate will change the sediment characteristics in which the species lives, primarily by re-suspending and preventing deposition of finer particles (Hiscock, 1983). The preferred habitat of Aphelochaeta marioni has a high silt content (Gibbs, 1969), a substratum which would not occur in very strong tidal streams. Therefore, the species would be outside its habitat preference and some mortality would be likely to occur. Additionally, the consequent lack of deposition of particulate matter at the sediment surface would reduce food availability. The resultant energetic cost over one year would also be likely to result in some mortality. An intolerance of intermediate is therefore recorded. Recoverability is recorded as high (see additional information below). | ||||
Tolerant* | Not relevant | Not sensitive* | High | |
Aphelochaeta marioni thrives in areas with low water flow, including the lowest category on the water flow scale (Connor et al., 1997), and is tolerant of hypoxia (Broom et al., 1991). Hence, the species is likely to tolerate a reduction in water flow. However, decreased water movement would result in increased deposition of suspended sediment (Hiscock, 1983). An increased rate of siltation may result in an increase in food availability for Aphelochaeta marioni and therefore growth and reproduction may be enhanced, but only if food was previously limiting. | ||||
Low | Very high | Very Low | Low | |
Aphelochaeta marioni is distributed over a wide temperature range. It has been recorded from the Mediterranean Sea and Indian Ocean (Hartmann-Schröder, 1974; Rogall, 1977; both cited in Farke, 1979) and therefore the species must be capable of tolerating higher temperatures than it experiences in Northern Europe. Furthermore, Aphelochaeta marioni lives infaunally and so is likely to be insulated from rapid temperature change. An increase in temperature would be expected to cause some physiological stress but no mortality and therefore an intolerance of low is recorded. Metabolic activity should quickly return to normal when temperatures decrease and so a recoverability of very high is recorded. | ||||
Low | Very high | Very Low | Low | |
Aphelochaeta marioni is distributed over a wide temperature range. It has been recorded from the Western Baltic Sea, South Atlantic Ocean and North Sea (Hartmann-Schröder, 1974; Rogall, 1977: both cited in Farke, 1979) and therefore the species must be capable of tolerating low temperatures. Aphelochaeta marioni lives buried in sediment and is therefore well insulated from decreases in temperature. In the Wadden Sea, the population was apparently unaffected by a short period of severe frost in I973 (Farke, 1979). A decrease in temperature would be likely to cause some physiological stress but no mortality and therefore an intolerance of low is recorded. Metabolic activity should quickly return to normal when temperatures increase and so a recoverability of very high is recorded. | ||||
Low | Very high | Very Low | Low | |
Aphelochaeta marioni typically inhabits turbid waters such as estuaries. It does not require light and therefore is not directly affected by an increase in turbidity for the purposes of light attenuation. An increase in turbidity may affect primary production in the water column and therefore reduce the availability of diatom food sinking to the sediment surface. In addition, primary production by the micro-phyto benthos on the sediment surface may be reduced, further decreasing food availability. However, phytoplankton will also immigrate from distant areas and so the effect may be decreased. As the turbidity increase only persists for a year, decreased food availability would probably only affect growth and fecundity and an intolerance of low is recorded. As soon as light levels return to normal, primary production will increase and hence recoverability is recorded as very high. | ||||
Tolerant | Not relevant | Not sensitive | High | |
Aphelochaeta marioni does not require light and therefore would not be affected by a decrease in turbidity for light attenuation purposes. | ||||
High | High | Moderate | Low | |
Aphelochaeta marioni characteristically inhabits soft sediments in sheltered areas. This suggests that it would be intolerant of wave exposure to some degree. An increase in wave exposure by two categories for one year would be likely to affect the species in several ways. Fine sediments would be eroded (Hiscock, 1983) resulting in the likely reduction of the habitat of Aphelochaeta marioni and a decrease in food availability. Strong wave action is also likely to cause damage or withdrawal of delicate feeding and respiration structures resulting in loss of feeding opportunities and compromised growth. Furthermore, individuals may be damaged or dislodged by scouring from sand and gravel mobilized by increased wave action. It is likely that high mortality would result from the considerations discussed above and therefore an intolerance of high is recorded. Recoverability is recorded as high (see additional information below). | ||||
Tolerant | Not relevant | Not sensitive | High | |
Aphelochaeta marioni characteristically inhabits soft sediments in sheltered areas and is tolerant of hypoxia (Broom et al., 1991). It is therefore likely to tolerate a decrease in wave exposure. | ||||
Tolerant | Not relevant | Not sensitive | Low | |
No information was found concerning the intolerance of Aphelochaeta marioni to noise. However, it is unlikely to be affected by noise and vibration at the level of the benchmark. | ||||
Low | Immediate | Not sensitive | High | |
Aphelochaeta marioni is only active at night (Farke, 1979). Farke (1979) noted their intolerance to visual disturbance in a microsystem in the laboratory. In order to observe feeding and breeding in the microsystem, the animals had to be gradually acclimated to lamp light. Even then, additional disturbance, such as an electronic flash, caused the retraction of palps and cirri and cessation of all activity for some minutes. Visual disturbance, in the form of direct illumination during the species' active period at night, may therefore result in loss of feeding opportunities, which may compromise growth and reproduction. Hence, an intolerance of low is recorded. When the visual disturbance is removed feeding activity should return to normal immediately. | ||||
Intermediate | High | Low | Low | |
Aphelochaeta marioni is a soft bodied organism which exposes its palps and cirri at the surface while feeding. The species lives infaunally in soft sediment, usually within a few centimetres of the sediment surface. Physical disturbance, such as dredging or dragging an anchor, would be likely to penetrate the upper few centimetres of the sediment and cause physical damage to Aphelochaeta marioni. An intolerance of intermediate is therefore recorded. Recoverability is recorded as high (see additional information below). | ||||
Tolerant | Not relevant | Not sensitive | High | |
Farke (1979) noted the effects of displacement on Aphelochaeta marioni (studied as Tharyx marioni) while performing experiments on intolerance to salinity changes. It was observed that when an individual was removed from its habitat and displaced to a similar habitat, it took approximately one minute to dig itself into the sediment. Aphelochaeta marioni is therefore recorded as not sensitive to displacement. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | High | Moderate | Very low | |
There is no evidence directly relating to the effects of synthetic chemicals on Aphelochaeta marioni. However, there is evidence from other polychaete species. Collier & Pinn (1998) investigated the effect on the benthos of ivermectin, a feed additive treatment for infestations of sea-lice on farmed salmonids. The polychaete Hediste diversicolor was particularly susceptible, exhibiting 100% mortality within 14 days when exposed to 8 mg/m2 of ivermectin in a microcosm. Arenicola marina was also intolerant of ivermectin through the ingestion of contaminated sediment (Thain et al., 1998; cited in Collier & Pinn, 1998) and it was suggested that deposit feeding was an important route for exposure to toxins. Beaumont et al. (1989) investigated the effects of tri-butyl tin (TBT) on benthic organisms. At concentrations of 1-3 µg/l there was no significant effect on the abundance of Hediste diversicolor or Cirratulus cirratus (family Cirratulidae) after 9 weeks in a microcosm. However, no juvenile polychaetes were retrieved from the substratum and hence there is some evidence that TBT had an effect on the larval and/or juvenile stages of these polychaetes. The high mortality of polychaetes due to exposure to ivermectin suggests a high intolerance to synthetic chemicals, but this decision is made with very low confidence. Recoverability is recorded as high (see additional information below). | ||||
Low | Very high | Very Low | Low | |
Bryan (1984) suggested that polychaetes are rather tolerant of heavy metals. In Restronguet Creek, the sediments contained levels of arsenic, copper and tin two orders of magnitude higher than in unpolluted estuaries, while levels of silver and zinc were approximately forty times higher (Bryan & Gibbs, 1983). The presence of Aphelochaeta marioni in this area (Bryan & Gibbs, 1983) suggests that the species is tolerant of heavy metal contamination. Furthermore, Aphelochaeta marioni was shown to accumulate arsenic (Gibbs et al., 1983). Aphelochaeta marioni (studied as Tharyx marioni) was found to have whole body concentrations of arsenic greater than 2000 µg/g dry weight (even when living under low ambient arsenic conditions). For reference, other Cirratulids, e.g. Cirriformia tentaculata, from the same habitat contained arsenic at concentrations lower than 100 µg/g dry weight. The purpose of the arsenic accumulation is unclear. Trials with gobies failed to confirm that it was a predator deterrent mechanism and it is probably not a detoxification mechanism as arsenic accumulations were similar for worms living in widely varying arsenic concentrations. Hence, there is no evidence to suggest that Aphelochaeta marioni is intolerant of heavy metal contamination. However, other annelids have been shown to be intolerant of heavy metal contamination (e.g. see review by Crompton, 1997) and therefore an intolerance of low is recorded. Due to their tolerance, a recoverability of very high is recorded. | ||||
Tolerant* | Not relevant | Not sensitive* | Moderate | |
Cirratulids seem to be mostly immune to oil spills, probably because their feeding tentacles are protected by a heavy secretion of mucus (Suchanek, 1993). This is supported by observations of Aphelochaeta marioni following the Amoco Cadiz oil spill in March, 1978 (Dauvin, 1982, 2000). Prior to the spill, Aphelochaeta marioni (studied as Tharyx marioni) was present in very low numbers in the Bay of Morlaix, western English Channel. Following the spill, the level of hydrocarbons in the sediment increased from 10 mg/kg dry sediment to 1443 mg/kg dry sediment 6 months afterwards. In the same period, Aphelochaeta marioni increased in abundance to a mean of 76 individuals/m2, which placed it among the top five dominant species in the faunal assemblage. It was suggested that the population explosion occurred due to the increased food availability because of accumulation of organic matter resulting from high mortality of browsers. Six years later, abundance of Aphelochaeta marioni began to fall away again, accompanied by gradual decontamination of the sediments. Aphelochaeta marioni is therefore recorded as not sensitive, with a potential to benefit from hydrocarbon contamination. | ||||
No information | Not relevant | No information | Not relevant | |
No evidence was found concerning the intolerance of Aphelochaeta marioni to radionuclide contamination. | ||||
Intermediate | High | Low | Very low | |
Raman & Ganapati (1983) studied the distribution of Aphelochaeta marioni (studied as Tharyx marioni) in relation to a sewage outfall in Visakhaptnam Harbour, Bay of Bengal. Aphelochaeta marioni was found to be dominant in the 'semi-healthy zone' characterized by high dissolved oxygen (median 7.2 mg/l), low biological oxygen demand (9.6 mg/l) and low nutrients (nitrate 0.02 mg/l, phosphate 0.88 mg/l). Aphelochaeta marioni was not found in high numbers in the polluted zone close to the sewage outfall, characterized by low dissolved oxygen (median 6.0 mg/l), high biological oxygen demand (14-60 mg/l) and high nutrients (nitrate 0.042-0.105 mg/l, phosphate 2.35-3.76 mg/l). This would suggest that Aphelochaeta marioni is intolerant of eutrophication. However, it would be expected that an increase in organic nutrients would lead to increased food availability for the deposit feeding Aphelochaeta marioni and that the species would thrive provided it could tolerate the increase in biological oxygen demand. Broom et al. (1991) stated that Aphelochaeta marioni was characteristic of faunal assemblages in the Severn Estuary with very poorly oxygenated mud and Thierman et al. (1996) noted that Aphelochaeta marioni "does not have a massively adverse reaction to sulphidic conditions". Furthermore, Dauvin (1982, 2000) recorded an increase in abundance of Aphelochaeta marioni following an oil spill which resulted in an explosion of plant growth due to high mortality of grazers. Therefore, the available evidence on intolerance of Aphelochaeta marioni to nutrient changes does not allow consistent conclusions to be drawn. The worst case scenario is that nutrient enrichment will lead to reduced abundance of Aphelochaeta marioni so an intolerance of intermediate is recorded, with very low confidence. Recoverability is recorded as high (see additional information below). | ||||
Tolerant | Not relevant | Not sensitive | High | |
Populations of Aphelochaeta marioni inhabit the open coast where sea water is at full salinity. They are clearly capable of thriving in fully saline conditions and hence probably relatively tolerant of increases in salinity. No information was found concerning the reaction to hypersaline conditions (>40psu). Farke (1979) studied the effects of changing salinity on Aphelochaeta marioni (studied as Tharyx marioni) in a microsystem in the laboratory. Over several weeks, the salinity in the microsystem was increased from 25-40 psu and no adverse reaction was noted. However, when individuals were removed from the sediment and displaced to a new habitat, they only dug into their new substratum if the salinities in the two habitats were similar. If the salinities differed by 3-5 psu, the worms carried out random digging movements, failed to penetrate the sediment and died at the substratum surface after a few hours. This would suggest that Aphelochaeta marioni can tolerate salinity changes when living infaunally but is far more intolerant when removed from its habitat. | ||||
Tolerant | Not relevant | Not sensitive | High | |
Aphelochaeta marioni thrives in estuaries and is therefore likely to be tolerant of decreases in salinity. It has been recorded from brackish inland waters in the Southern Netherlands with a salinity of 16 psu, but not in areas permanently exposed to lower salinities (Wolff, 1973). However, it also penetrates into areas exposed to salinities as low as 4 psu for short periods at low tide when fresh water discharge from rivers is high (Farke, 1979). The distribution of Aphelochaeta marioni, therefore, suggests that it is very tolerant of low salinity conditions. | ||||
Low | Very high | Very Low | Low | |
Connor et al. (1997) described sediments in which Aphelochaeta marioni is commonly found as usually with a "black anoxic layer close to the sediment surface." Broom et al. (1991) recorded that Aphelochaeta marioni (studied as Tharyx marioni) characterized the faunal assemblage of very poorly oxygenated mud in the Severn Estuary. They found Aphelochaeta marioni to be dominant where the redox potential at 4 cm sediment depth was 56 mV and, therefore, concluded that the species was tolerant of very low oxygen tensions. Thierman et al. (1996) studied the distribution of Aphelochaeta marioni in relation to hydrogen sulphide concentrations. The species was found to be abundant at low sulphide concentrations (<50 µM) but only occasional at concentrations from 75-125 µM. They concluded that Aphelochaeta marioni does not display a massively adverse reaction to sulphidic conditions and is able to tolerate a low amount of sulphide. The evidence suggests that Aphelochaeta marioni is capable of tolerating hypoxia but it is difficult to determine to what degree. It is likely that feeding, growth and reproduction would be impaired under sustained low oxygen conditions and therefore an intolerance of low is recorded. Activity should return to normal when oxygen tensions increase and therefore a recoverability of very high is recorded. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
Low | Very high | Very Low | Low | |
Gibbs (1971) recorded that nearly all of the population of Aphelochaeta marioni in Stonehouse Pool, Plymouth Sound, was infected with a sporozoan parasite belonging to the acephaline gregarine genus Gonospora, which inhabits the coelom of the host. No evidence was found to suggest that gametogenesis was affected by Gonospora infection and there was no apparent reduction in fecundity. However, any parasitic infection is likely to impair the host in some way and an intolerance of low is recorded. If the parasite were to be removed, the host would be likely to return to normal health quickly so a recoverability of very high is recorded. No other information was found concerning infection of Aphelochaeta marioni by microbial pathogens. | ||||
No information | Not relevant | No information | Not relevant | |
No information was found concerning non-native species which would be likely to compete with Aphelochaeta marioni. | ||||
Not relevant | Not relevant | Not relevant | Not relevant | |
There is no evidence that Aphelochaeta marioni is extracted deliberately. | ||||
Intermediate | High | Low | Very low | |
Commercial extraction of other infaunal species is likely to have an effect on Aphelochaeta marioni where their distributions overlap. Hall & Harding (1997) demonstrated that commercial cockle harvesting by suction dredging had significant effects on soft-sediment infaunal communities. Following dredging, species numbers were reduced by up to 30% and abundances by up to 50%. In Maine, USA, commercial digging for worms and clams was studied by Brown & Wilson (1997). Following experimental digging for two and a half months, the densities of three polychaete species, including Tharyx acutus, were significantly reduced, as was the total number of taxa present. It should be noted that Tharyx acutus is a surface dweller and therefore has a different lifestyle to Aphelochaeta marioni. Hence, the inferences that can be drawn are limited. However, it seems likely that the disruption of the infaunal community caused by commercial harvesting would result in mortality of Aphelochaeta marioni and therefore an intolerance of intermediate is recorded. Recoverability is recorded as high (see additional information below). |
- no data -
National (GB) importance | - | Global red list (IUCN) category | - |
Native | - | ||
Origin | - | Date Arrived | Not relevant |
Beaumont, A.R., Newman, P.B., Mills, D.K., Waldock, M.J., Miller, D. & Waite, M.E., 1989. Sandy-substrate microcosm studies on tributyl tin (TBT) toxicity to marine organisms. Scientia Marina, 53, 737-743.
Beukema, J.J., 1995. Long-term effects of mechanical harvesting of lugworms Arenicola marina on the zoobenthic community of a tidal flat in the Wadden Sea. Netherlands Journal of Sea Research, 33, 219-227.
Brenchley, G.A., 1981. Disturbance and community structure : an experimental study of bioturbation in marine soft-bottom environments. Journal of Marine Research, 39, 767-790.
Broom, M.J., Davies, J., Hutchings, B. & Halcrow, W., 1991. Environmental assessment of the effects of polluting discharges: stage 1: developing a post-facto baseline. Estuarine, Coastal and Shelf Science, 33, 71-87.
Brown, B. & Wilson, W.H., 1997. The role of commercial digging of mudflats as an agent for change of infaunal intertidal populations. Journal of Experimental Marine Biology and Ecology, 218, 39-51.
Bruce, J.R., Colman, J.S. & Jones, N.S., 1963. Marine fauna of the Isle of Man. Liverpool: Liverpool University Press.
Bryan, G.W. & Gibbs, P.E., 1983. Heavy metals from the Fal estuary, Cornwall: a study of long-term contamination by mining waste and its effects on estuarine organisms. Plymouth: Marine Biological Association of the United Kingdom. [Occasional Publication, no. 2.]
Bryan, G.W., 1984. Pollution due to heavy metals and their compounds. In Marine Ecology: A Comprehensive, Integrated Treatise on Life in the Oceans and Coastal Waters, vol. 5. Ocean Management, part 3, (ed. O. Kinne), pp.1289-1431. New York: John Wiley & Sons.
Collier, L.M. & Pinn, E.H., 1998. An assessment of the acute impact of the sea lice treatment Ivermectin on a benthic community. Journal of Experimental Marine Biology and Ecology, 230 (1), 131-147. DOI https://doi.org/10.1016/s0022-0981(98)00081-1
Connor, D.W., Dalkin, M.J., Hill, T.O., Holt, R.H.F. & Sanderson, W.G., 1997a. Marine biotope classification for Britain and Ireland. Vol. 2. Sublittoral biotopes. Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06., Joint Nature Conservation Committee, Peterborough, JNCC Report no. 230, Version 97.06.
Crompton, T.R., 1997. Toxicants in the aqueous ecosystem. New York: John Wiley & Sons.
Cryer, M., Whittle, B.N. & Williams, K., 1987. The impact of bait collection by anglers on marine intertidal invertebrates. Biological Conservation, 42, 83-93.
Dauvin, J.C., 1982. Impact of Amoco Cadiz oil spill on the muddy fine sand Abra alba - Melinna palmata community from the Bay of Morlaix. Estuarine and Coastal Shelf Science, 14, 517-531.
Dauvin, J.C., 2000. The muddy fine sand Abra alba - Melinna palmata community of the Bay of Morlaix twenty years after the Amoco Cadiz oil spill. Marine Pollution Bulletin, 40, 528-536.
Farke, H., 1979. Population dynamics, reproduction and early development of Tharyx marioni (Polychaeta, Cirratulidae) on tidal flats of the German Bight. Veroffentlichungen des Instituts fur Meeresforschung in Bremerhaven, 18, 69-99.
Fowler, S.L., 1999. Guidelines for managing the collection of bait and other shoreline animals within UK European marine sites. Natura 2000 report prepared by the Nature Conservation Bureau Ltd. for the UK Marine SACs Project, 132 pp., Peterborough: English Nature (UK Marine SACs Project)., http://www.english-nature.org.uk/uk-marine/reports/reports.htm
Gibbs, P.E., 1969. A quantitative study of the polychaete fauna of certain fine deposits in Plymouth Sound. Journal of the Marine Biological Association of the United Kingdom, 49, 311-326.
Gibbs, P.E., 1971. Reproductive cycles in four polychaete species belonging to the family Cirratulidae. Journal of the Marine Biological Association of the United Kingdom, 51, 745-769.
Gibbs, P.E., Langston, W.J., Burt, G.R. & Pascoe, P.L., 1983. Tharyx marioni (Polychaeta) : a remarkable accumulator of arsenic. Journal of the Marine Biological Association of the United Kingdom, 63, 313-325.
Hall, S.J. & Harding, M.J.C., 1997. Physical disturbance and marine benthic communities: the effects of mechanical harvesting of cockles on non-target benthic infauna. Journal of Applied Ecology, 34, 497-517.
Hayward, P.J. & Ryland, J.S. (ed.) 1995b. Handbook of the marine fauna of North-West Europe. Oxford: Oxford University Press.
Hiscock, K., 1983. Water movement. In Sublittoral ecology. The ecology of shallow sublittoral benthos (ed. R. Earll & D.G. Erwin), pp. 58-96. Oxford: Clarendon Press.
Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]
JNCC (Joint Nature Conservation Committee), 1999. Marine Environment Resource Mapping And Information Database (MERMAID): Marine Nature Conservation Review Survey Database. [on-line] http://www.jncc.gov.uk/mermaid
Raman, A.V. & Ganapati, P.N., 1983. Pollution effects on ecobiology of benthic polychaetes in Visakhapatnam Harbour (Bay of Bengal). Marine Pollution Bulletin, 14, 46-52.
Reise, K., 1977. Predator exclusion experiments in an intertidal mud flat. Helgolander Meeresuntersuchungen, 30, 263-271.
Suchanek, T.H., 1993. Oil impacts on marine invertebrate populations and communities. American Zoologist, 33, 510-523. DOI https://doi.org/10.1093/icb/33.6.510
Thiermann, F., Niemeyer, A-S. & Giere, O., 1996. Variations in the sulfide regime and the distribution of macrofauna in an intertidal flat in the North Sea. Helgolander Meeresuntersuchungen, 50, 87-104.
Wolff, W.J., 1973. The estuary as a habitat. An analysis of the data in the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse, and Scheldt. Zoologische Verhandelingen, 126, 1-242.
Bristol Regional Environmental Records Centre, 2017. BRERC species records recorded over 15 years ago. Occurrence dataset: https://doi.org/10.15468/h1ln5p accessed via GBIF.org on 2018-09-25.
National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.
NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.
OBIS (Ocean Biodiversity Information System), 2023. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2023-06-03
This review can be cited as:
Last Updated: 08/06/2007