Distribution data supplied by the Ocean Biodiversity Information System (OBIS). To interrogate UK data visit the NBN Atlas.Map Help
Researched by | Angus Jackson | Refereed by | Dr Graham Scott |
Authority | Linnaeus, 1753 | ||
Other common names | - | Synonyms | - |
Fucus serratus, the toothed wrack, is a robust, olive-brown shrubby seaweed that grows in high densities low on the seashore. The fronds are about 2 cm wide, splitting in two repeatedly. The fronds bear no air bladders. The whole plant typically grows to about 60 cm long. The fronds have a serrated edge and grow from a short stalk.
Also known as serrated or saw wrack. Ripe male plants can be distinguished by their orange colour.
- none -
Phylum | Ochrophyta | Brown and yellow-green seaweeds |
Class | Phaeophyceae | |
Order | Fucales | |
Family | Fucaceae | |
Genus | Fucus | |
Authority | Linnaeus, 1753 | |
Recent Synonyms |
Typical abundance | High density | ||
Male size range | 50-70cm | ||
Male size at maturity | |||
Female size range | Large(>50cm) | ||
Female size at maturity | |||
Growth form | Shrub | ||
Growth rate | 0.2-0.1cm/day | ||
Body flexibility | |||
Mobility | Not relevant | ||
Characteristic feeding method | Autotroph | ||
Diet/food source | |||
Typically feeds on | Not relevant | ||
Sociability | No information | ||
Environmental position | Epifloral | ||
Dependency | Independent. | ||
Supports | Substratum the hydroid, Dynamena pumila, the bryozoans Flustrellidra hispida, Alcyonidium hirsutum, Alcyonidium polyoum, Electra pilosa, and the polychaete Spirorbis spirorbis. | ||
Is the species harmful? | No |
During most of the year plant densities range between 10-14/0.25 square metres. When recruitment is occurring then densities may rise to 18-22/0.25 square metres. Surface cover by this species may reach over 95 percent during the summer. This decreases and becomes more patchy during winter and autumn. Fucus serratus typically grows up to 70 cm but has been recorded at over 2 m in length in very sheltered environments. Growth rate refers to maximal growth rate under optimal conditions. Growth rate varies considerably depending on environmental conditions. Growth rate ranges from 4-12 cm per annum. There are two size classes: germlings less than 10 cm (30-40 percent of the population); and adult plants greater than 40 cm. The germlings developing from eggs are initially microscopic and become visible to the naked eye after about two weeks. There is no clear mode in between but individuals of intermediate size are always present. Fucus serratus supports a wide variety of epiphytes with over 90 species having been recorded. Growth of microalgae on the frond surface can cause shading and reduced photosynthesis, anoxia at the frond surface and may interfere with reproduction. Mobile herbivores may benefit Fucus serratus through removal of this algal film. Other dominant macrofaunal species found on Fucus serratus include Lacuna pallidula, Littorina mariae, Amphithoe rubricata, Idotea granulosa and epiflora include Rhydomenia palmata and Elachista fucicola.
Physiographic preferences | Open coast, Sea loch / Sea lough, Ria / Voe, Estuary |
Biological zone preferences | |
Substratum / habitat preferences | Bedrock, Cobbles, Large to very large boulders, Small boulders |
Tidal strength preferences | Moderately Strong 1 to 3 knots (0.5-1.5 m/sec.), Strong 3 to 6 knots (1.5-3 m/sec.), Very Weak (negligible), Weak < 1 knot (<0.5 m/sec.) |
Wave exposure preferences | Extremely sheltered, Moderately exposed, Sheltered, Very sheltered |
Salinity preferences | Full (30-40 psu), Reduced (18-30 psu), Variable (18-40 psu) |
Depth range | Not relevant |
Other preferences | No text entered |
Migration Pattern | Non-migratory / resident |
Reproductive type | Gonochoristic (dioecious) | |
Reproductive frequency | Annual protracted | |
Fecundity (number of eggs) | >1,000,000 | |
Generation time | Insufficient information | |
Age at maturity | Insufficient information | |
Season | May - November | |
Life span | 2-5 years |
Larval/propagule type | - |
Larval/juvenile development | Not relevant |
Duration of larval stage | No information |
Larval dispersal potential | Greater than 10 km |
Larval settlement period |
The MarLIN sensitivity assessment approach used below has been superseded by the MarESA (Marine Evidence-based Sensitivity Assessment) approach (see menu). The MarLIN approach was used for assessments from 1999-2010. The MarESA approach reflects the recent conservation imperatives and terminology and is used for sensitivity assessments from 2014 onwards.
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | High | Moderate | High | |
Fucus serratus is permanently attached to the substratum. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to out-compete other species and this may be dependent on suitable environmental conditions. | ||||
High | High | Moderate | Low | |
Intolerance to smothering will depend on the state of the tide. If the factor occurs when the tide is out and the alga is lying flat on the substratum then all the frond will be covered and photosynthesis prevented. If smothering occurs whilst the alga is underwater and upright then not all the photosynthetic surfaces of adult plants will be covered. Germlings are likely to be smothered and killed and will be the most intolerant stage of Fucus serratus life history. A further form of smothering can occur through heavy growth of epibionts such as Flustrellidra hispida on the frond surfaces. This growth may reduce photosynthesis and increase anoxia at the frond surface. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to outcompete other species and this may be dependent on suitable environmental conditions. | ||||
Low | Very high | Very Low | Low | |
Siltation will only have an effect during the time that the seaweed is covered with water. Increased siltation may cover the frond surface with a layer of sediment reducing photosynthesis and growth rate. Once conditions return to 'normal' then it probably won't take long for the population to resume a normal size and growth rate. | ||||
No information | ||||
Intermediate | High | Low | High | |
Seaweeds cannot prevent desiccation, they can only tolerate it. Seaweeds have a critical water content. Desiccation past this point causes irreversible damage. The critical point for Fucus serratus is 40 percent water content. A reduction in water content to 40 percent can occur after 2 hours exposure to sunshine. Fucus spiralis, a similar species to Fucus serratus, transplanted further up the shore to the Pelvetia canaliculata zone (greater desiccation) die within 4-8 weeks (Schonbeck & Norton, 1978). Other species better able to tolerate desiccation will competitively displace Fucus serratus following increases in desiccation. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to outcompete other species and this may be dependent on suitable environmental conditions. | ||||
Intermediate | High | Low | Moderate | |
Fucus spiralis, a similar species to Fucus serratus, transplanted further up the shore to the Pelvetia canaliculata zone (longer emergence) die within 4-8 weeks. Other species better able to tolerate desiccation will competitively displace Fucus serratus following increases in emergence. Decreases in emergence will put the species in competition with species that typically remain submerged (e.g. laminarians) although in some locations of reduced salinity (the Belt Sea) the Fucus serratus population remains continually submerged. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to outcompete other species and this may be dependent on suitable environmental conditions. | ||||
No information | ||||
Intermediate | High | Low | Moderate | |
Increases in water flow rate may cause some of the population to be torn off the substratum. Decreases in water flow rate are unlikely to have any effect. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. Recruitment may occur through reproduction of the remaining population or from other populations. As some of the population remains it is unlikely that other species will come to dominate. Removal of some of the adult canopy will allow the understorey germling back to grow faster. Recovery will probably have occurred after a year. | ||||
No information | ||||
Tolerant | Not relevant | Not sensitive | High | |
Decreases in temperature are unlikely to have any effect. The species distribution extends north to Novaya Zemlya where water temperatures are much colder. Fucus distichus, a similar species can survive for several months at -40 °C. The species distribution also extends further south than the British Isles into warmer waters. Increases of up to 5°C above British and Irish temperatures is not likely to have a detrimental effect. Growth of Fucus serratus is optimal at 20 °C so British and Irish populations are more likely to benefit from increases in temperature. Fucus serratus cannot survive continual exposure to temperatures above 28°C for a week. | ||||
No information | ||||
Low | Very high | Very Low | Moderate | |
Turbidity is only relevant when Fucus serratus is covered with water. Seaweed photosynthesis declines on emersion and recommences when recovered with water. Once conditions return to 'normal' then it will probably not take long for the population to resume a normal size and growth rate. | ||||
No information | ||||
High | High | Moderate | Moderate | |
Fucus serratus only occurs on coasts with moderate exposure or less. Increases above this level of wave action will cause damage to individual plants, breaking fronds and removing entire plants from the substratum. Fucus serratus is more intolerant of wave exposure than Fucus vesiculosus. On more exposed coasts there are fewer adult individuals in the population. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to outcompete other species and this may be dependent on suitable environmental conditions. | ||||
No information | ||||
Tolerant | Not relevant | Not sensitive | High | |
Seaweeds have no known mechanism for detection of noise vibrations. | ||||
Tolerant | Not relevant | Not sensitive | High | |
Seaweeds have no known mechanism for visual perception. | ||||
Intermediate | High | Low | High | |
Although the species is highly flexible, abrasion is likely to cause damage to and removal of fronds and even removal of entire plants from the substratum. Human trampling has been shown to significantly reduce the cover of fucoids on a shore (Holt et al., 1997) Cracks and crevices are ideal places for germlings to develop and these sites may be protected from abrasion. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. Recruitment may occur through reproduction of the remaining population of from other populations. As some of the population remains it is unlikely that other species will come to dominate. Removal of some of the adult canopy will allow the understorey germling back to grow faster. Recovery will probably have occurred after a year. | ||||
High | High | Moderate | High | |
Fucus serratus is permanently attached to the substratum. If removed, the attachment cannot be reformed. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to out-compete other species and this may be dependent on suitable environmental conditions. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
High | High | Moderate | Not relevant | |
Different life stages of Fucus serratus differ in their intolerance to synthetic chemicals. Scalan & Wilkinson (1987) found that spematozoa and newly fertilized eggs of Fucus serratus were the most intolerant of biocides, while adult plants were only just significantly affected at 5 ml/l of the biocides Dodigen v181-1, Dodigen v 2861-1 and ML-910. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. If the entire population of Fucus serratus is removed, other species may come to dominate. Re-establishment of the seaweed may depend on the ability to outcompete other species and this may be dependent on suitable environmental conditions. | ||||
Low | High | Low | Not relevant | |
Fucoid algae readily accumulate heavy metals within their tissues. The effect of heavy metals on the growth rate of adult Fucus serratus plants has been studied by Stromgren (1979b;1980a & b). Copper significantly reduces the growth rate of vegetative apices at 25 µg/l over 10 days (Stromgren, 1979b). Zinc, lead, cadmium & mercury significantly reduce growth rate at 1400 µg/l , 810ug/l, 450ug/l and 5ug/l respectively (Stromgren, 1980a & b). The benchmark concentrations of heavy metals may therefore reduce growth rate, so intolerance is reported as low, although early life stages of the species may be more intolerant. | ||||
Intermediate | High | Low | High | |
Adult plants are tolerant of exposure to spills of crude oil although very young germlings are intolerant of relatively low concentrations of 'water soluble' extractions of crude oils. Exposure of eggs to these extractions (at 1.5 micrograms/ml for 96 hours) interferes with adhesion during settling) and (at 0.1micrograms/ml) prevents further development (Johnston, 1977). Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. Recruitment may occur through reproduction of the remaining population or from other populations. As some of the population remains it is unlikely that other species will come to dominate. Removal of some of the adult canopy will allow the understorey germling back to grow faster. Recovery will probably have occurred after a year. | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
Intermediate | High | Low | Moderate | |
When in high densities, the seaweed competes for space light and nutrients. Nutrient availability is the most important factor controlling germling growth. Plants under low nutrient regimes achieve smaller sizes and may be out competed. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. Recruitment may occur through reproduction of the remaining population of from other populations. As some of the population remains it is unlikely that other species will come to dominate. Removal of some of the adult canopy will allow the understorey germling back to grow faster. Recovery will probably have occurred after a year. | ||||
Low | Very high | Very Low | High | |
Being intertidal and subject to precipitation, Fucus serratus is exposed to a range of salinities. The species is able to compensate for these changes in salinity by adjusting internal ion concentrations. Salinity affects the photosynthetic rate and hence growth rate of seaweed. For Fucus serratus, growth rate is maximal at a salinity of 20 psu. Above and below this growth rate declines. If salinity is suddenly increased for brief periods then the rate of net photosynthesis increases before decreasing. Salinity can also affect respiration rates. Once conditions return to 'normal' then it probably won't take long for the population to resume a normal size and growth rate. | ||||
No information | ||||
Low | Very high | Very Low | Low | |
Cole et al. (1999) suggest possible adverse effects on marine species below 4 mg/l and probable adverse effects below 2mg/l. There is no information about Fucus serratus tolerance to changes in oxygenation. Once conditions return to 'normal' then it probably won't take long for the population to resume a normal size and growth rate. |
Intolerance | Recoverability | Sensitivity | Evidence/Confidence | |
No information | No information | No information | Not relevant | |
Insufficient information | ||||
No information | No information | No information | Not relevant | |
Insufficient information | ||||
Intermediate | High | Low | High | |
Fucus serratus is one of several harvested and exploited algal species. Fucus serratus is highly fecund, is iteroparous, surviving and breeding for protracted periods over 3-4 years. The eggs are broadcast into the water column allowing a potentially large dispersal distance. The species is found on all British and Irish coasts so there are few mechanisms isolating populations. Recruitment may occur through reproduction of the remaining population of from other populations. As some of the population remains it is unlikely that other species will come to dominate. Removal of some of the adult canopy will allow the understorey germling back to grow faster. Recovery will probably have occurred after a year. | ||||
Tolerant | Not relevant | Not sensitive | Low | |
Fucus serratus has no known obligate relationships. |
- no data -
National (GB) importance | - | Global red list (IUCN) category | - |
Native | - | ||
Origin | - | Date Arrived | - |
Brenchley, J.L., Rava, J.A. & Johnston, A.M., 1997. Resource acquisition in two intertidal fucoid seaweeds, Fucus serratus and Himanthalia elongata: seasonal variation and effects of reproductive development. Marine Biology, 129, 367-375.
Creed, J.C., Norton, T.A. & Kain, J.M., 1997. Intraspecific competition in Fucus serratus germlings: The interaction of light, nutrients and density. Journal of Experimental Marine Biology and Ecology, 212, 211-223.
Dickinson, C.I., 1963. British seaweeds. London & Frome: Butler & Tanner Ltd.
Hayward, P., Nelson-Smith, T. & Shields, C. 1996. Collins pocket guide. Sea shore of Britain and northern Europe. London: HarperCollins.
Howson, C.M. & Picton, B.E., 1997. The species directory of the marine fauna and flora of the British Isles and surrounding seas. Belfast: Ulster Museum. [Ulster Museum publication, no. 276.]
Johnston, C.S., 1977. The sub-lethal effects of water-soluble extracts of oil on the fertilisation and development of Fucus serratus L. (Serrated wrack). Rapports et Proces Verbaux des Reunions. Conseil International pour l'Exploration de la Mer, 171, 184-185.
Knight, M. & Parke, M., 1950. A biological study of Fucus vesiculosus L. and Fucus serratus L. Journal of the Marine Biological Association of the United Kingdom, 29, 439-514.
Lobban, C.S. & Harrison, P.J., 1997. Seaweed ecology and physiology. Cambridge: Cambridge University Press.
Scanlan, C.M. & Wilkinson, M., 1987. The use of seaweeds in biocide toxicity testing. Part 1. The sensitivity of different stages in the life-history of Fucus and of other algae, to certain biocides. Marine Environmental Research, 21, 11-29.
Schonbeck, M.W. & Norton, T.A., 1978. Factors controlling the upper limits of fucoid algae on the shore. Journal of Experimental Marine Biology and Ecology, 31, 303-313.
Seed, R. & O'Connor, R.J., 1981. Epifaunal associates of Fucus serratus at Dale, south-west Wales. Holarctic Ecology, 4, 1-11.
Strömgren, T., 1979b. The effect of zinc on the increase in length of five species of intertidal Fucales. Journal of Experimental Marine Biology and Ecology, 40, 95-102.
Strömgren, T., 1980a. The effect of dissolved copper on the increase in length of four species of intertidal fucoid algae. Marine Environmental Research, 3, 5-13.
Strömgren, T., 1980b. The effect of lead, cadmium and mercury on the increase in length of five intertidal Fucales. Journal of Experimental Marine Biology and Ecology, 43, 107-119.
Williams, G.A., 1996. Seasonal variation in a low shore Fucus serratus (Fucales, Phaeophyta) population and its epiphytic fauna. Hydrobiologia, 326/327, 191-197.
Bristol Regional Environmental Records Centre, 2017. BRERC species records recorded over 15 years ago. Occurrence dataset: https://doi.org/10.15468/h1ln5p accessed via GBIF.org on 2018-09-25.
Bristol Regional Environmental Records Centre, 2017. BRERC species records within last 15 years. Occurrence dataset: https://doi.org/10.15468/vntgox accessed via GBIF.org on 2018-09-25.
Centre for Environmental Data and Recording, 2018. Ulster Museum Marine Surveys of Northern Ireland Coastal Waters. Occurrence dataset https://www.nmni.com/CEDaR/CEDaR-Centre-for-Environmental-Data-and-Recording.aspx accessed via NBNAtlas.org on 2018-09-25.
Cofnod – North Wales Environmental Information Service, 2018. Miscellaneous records held on the Cofnod database. Occurrence dataset: https://doi.org/10.15468/hcgqsi accessed via GBIF.org on 2018-09-25.
Environmental Records Information Centre North East, 2018. ERIC NE Combined dataset to 2017. Occurrence dataset: http://www.ericnortheast.org.ukl accessed via NBNAtlas.org on 2018-09-38
Fenwick, 2018. Aphotomarine. Occurrence dataset http://www.aphotomarine.com/index.html Accessed via NBNAtlas.org on 2018-10-01
Fife Nature Records Centre, 2018. St Andrews BioBlitz 2014. Occurrence dataset: https://doi.org/10.15468/erweal accessed via GBIF.org on 2018-09-27.
Fife Nature Records Centre, 2018. St Andrews BioBlitz 2015. Occurrence dataset: https://doi.org/10.15468/xtrbvy accessed via GBIF.org on 2018-09-27.
Fife Nature Records Centre, 2018. St Andrews BioBlitz 2016. Occurrence dataset: https://doi.org/10.15468/146yiz accessed via GBIF.org on 2018-09-27.
Kent Wildlife Trust, 2018. Biological survey of the intertidal chalk reefs between Folkestone Warren and Kingsdown, Kent 2009-2011. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.
Kent Wildlife Trust, 2018. Kent Wildlife Trust Shoresearch Intertidal Survey 2004 onwards. Occurrence dataset: https://www.kentwildlifetrust.org.uk/ accessed via NBNAtlas.org on 2018-10-01.
Lancashire Environment Record Network, 2018. LERN Records. Occurrence dataset: https://doi.org/10.15468/esxc9a accessed via GBIF.org on 2018-10-01.
Manx Biological Recording Partnership, 2017. Isle of Man wildlife records from 01/01/2000 to 13/02/2017. Occurrence dataset: https://doi.org/10.15468/mopwow accessed via GBIF.org on 2018-10-01.
Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1990 to 1994. Occurrence dataset: https://doi.org/10.15468/aru16v accessed via GBIF.org on 2018-10-01.
Manx Biological Recording Partnership, 2018. Isle of Man historical wildlife records 1995 to 1999. Occurrence dataset: https://doi.org/10.15468/lo2tge accessed via GBIF.org on 2018-10-01.
Merseyside BioBank., 2018. Merseyside BioBank (unverified). Occurrence dataset: https://doi.org/10.15468/iou2ld accessed via GBIF.org on 2018-10-01.
National Trust, 2017. National Trust Species Records. Occurrence dataset: https://doi.org/10.15468/opc6g1 accessed via GBIF.org on 2018-10-01.
NBN (National Biodiversity Network) Atlas. Available from: https://www.nbnatlas.org.
OBIS (Ocean Biodiversity Information System), 2023. Global map of species distribution using gridded data. Available from: Ocean Biogeographic Information System. www.iobis.org. Accessed: 2023-04-02
Outer Hebrides Biological Recording, 2018. Non-vascular Plants, Outer Hebrides. Occurrence dataset: https://doi.org/10.15468/goidos accessed via GBIF.org on 2018-10-01.
Royal Botanic Garden Edinburgh, 2018. Royal Botanic Garden Edinburgh Herbarium (E). Occurrence dataset: https://doi.org/10.15468/ypoair accessed via GBIF.org on 2018-10-02.
South East Wales Biodiversity Records Centre, 2018. SEWBReC Algae and allied species (South East Wales). Occurrence dataset: https://doi.org/10.15468/55albd accessed via GBIF.org on 2018-10-02.
South East Wales Biodiversity Records Centre, 2018. Dr Mary Gillham Archive Project. Occurance dataset: http://www.sewbrec.org.uk/ accessed via NBNAtlas.org on 2018-10-02
Suffolk Biodiversity Information Service., 2017. Suffolk Biodiversity Information Service (SBIS) Dataset. Occurrence dataset: https://doi.org/10.15468/ab4vwo accessed via GBIF.org on 2018-10-02.
The Wildlife Information Centre, 2018. TWIC Biodiversity Field Trip Data (1995-present). Occurrence dataset: https://doi.org/10.15468/ljc0ke accessed via GBIF.org on 2018-10-02.
Yorkshire Wildlife Trust, 2018. Yorkshire Wildlife Trust Shoresearch. Occurrence dataset: https://doi.org/10.15468/1nw3ch accessed via GBIF.org on 2018-10-02.
This review can be cited as:
Last Updated: 29/05/2008